
Structure of a Computer Machine Code and Assembly Language Low-Level and High-Level Language Programming Program Translation

COMP 10280
Programming I (Conversion)

John Dunnion

School of Computer Science
University College Dublin

COMP 10280 Programming I (Conversion)/Lecture 2



Structure of a Computer Machine Code and Assembly Language Low-Level and High-Level Language Programming Program Translation

Outline

Structure of a Computer
Numbers
Computer Hardware

Machine Code and Assembly Language

Low-Level and High-Level Language Programming

Program Translation



Structure of a Computer Machine Code and Assembly Language Low-Level and High-Level Language Programming Program Translation

Decimal Numbers

• Numbers that we use are made up of decimal digits
• Each decimal digit can have a value 0–9
• Combining digits, we can form larger numbers by

representing them as integers in base 10
• 21510 = (5 × 100) + (1 × 101) + (2 × 102) =
(5 × 1) + (1 × 10) + (2 × 100) =
5 + 10 + 200 =
215



Structure of a Computer Machine Code and Assembly Language Low-Level and High-Level Language Programming Program Translation

Binary Numbers

• Numbers in a computer are made up of binary digits or
“bits”

• Each binary digit can have one of two values: 0 or 1
• Combining binary digits (bits), we can form larger numbers

by representing them as integers in base 2
• 110101112 =
(1 × 20) + (1 × 21) + (1 × 22) + (0 × 23) + (1 × 24) + (0 ×
25) + (1 × 26) + (1 × 27) =
(1× 1) + (1× 2) + (1× 4) + (0× 8) + (1× 16) + (0× 32) +
(1 × 64) + (1 × 128) =
1 + 2 + 4 + 0 + 16 + 0 + 64 + 128 =
215



Structure of a Computer Machine Code and Assembly Language Low-Level and High-Level Language Programming Program Translation

Binary Numbers

• Binary is the natural number base for computers
• For larger units of data, we name numbers according to

the “binary thousand”, 210 = 1024
• 1 KiloByte (KByte or KB) = 210bytes = 1024 bytes
• 1 MegaByte (MByte or MB) = 220 bytes = 1 048 576 bytes
• 1 GigaByte (GByte or GB) = 230 bytes = 1 073 741 824

bytes
• But see later!
• It is often convenient to represent numbers in base 8

(octal) or base 16 (hexadecimal)
• Base 8: Digits 0–7; Base 16: Digits 0–9, A–F
• 21510 = 3278 = D716 = 110101112



Structure of a Computer Machine Code and Assembly Language Low-Level and High-Level Language Programming Program Translation

Von Neumann Architecture

• Central Processing Unit
• Arithmetic and Logic Unit
• Registers

• Control Unit
• Instruction Registers
• Program Counter

• Primary Memory
• Instructions
• Data

• Secondary Memory
• Input and Output Mechanisms



Structure of a Computer Machine Code and Assembly Language Low-Level and High-Level Language Programming Program Translation

Central Processing Unit (CPU)

• Often just referred to as the Processor or Core
• The “brain” of the computer
• Reads instructions from memory and executes them
• Operates at very high speeds
• Speed measured in Hertz
• A 2.8 GigaHertz (2.8GHz) computer operates at 2.8 billion

(2 800 000 000) clock cycles per second
• The clock cycle is a switch between a high voltage and a

low voltage
• Usually one simple instruction per clock cycle
• Many modern computers have more than one CPU

(“Multi-Core”, “Dual-Core”, “Quad-Core”)
• Intel i7 Quad-Core 2.8GHz Processor



Structure of a Computer Machine Code and Assembly Language Low-Level and High-Level Language Programming Program Translation

Components of the CPU

• Arithmetic and Logic Unit (ALU)
• Arithmetic and logic circuits that execute the operations of

the CPU’s instruction set
• Registers

• Set of registers that hold the operands for all ALU
operations

• Control Unit
• Logic that sequences each step in the execution of an

instruction
• Bus Interface Unit

• Set of registers at the interface between the CPU and the
System Bus



Structure of a Computer Machine Code and Assembly Language Low-Level and High-Level Language Programming Program Translation

System Memory

• System Memory holds all of the active data that the
computer is using

• Random Access Memory (“RAM”)
• Volatile
• Initially RAM is empty
• Each program or data file uses part of memory
• When a program finishes, the memory it used is freed for

other uses
• Memory measured in MBytes/GBytes
• 8GBytes memory
• Also have Read-Only Memory (“ROM”)



Structure of a Computer Machine Code and Assembly Language Low-Level and High-Level Language Programming Program Translation

Random Access Memory (RAM)

• Ordered sequence of locations in which to store data
• Each location has a unique address
• One byte of data can be stored at each location
• In an 8-bit computer architecture, the address is 8 bits

long. This means that there are 28 = 256 locations that can
be addressed directly

• In a 32-bit computer architecture, there are 232 = 4GBytes
of memory that can be addressed directly

• Most modern computers use a 64-bit architecture
• A program’s code and the data it needs are loaded into

memory while the program is executing
• Most modern computers have a hierarchical memory: one

or more memory caches



Structure of a Computer Machine Code and Assembly Language Low-Level and High-Level Language Programming Program Translation

System Bus

• A bus is a channel (eg a set of wires) over which data flows
between two components

• Most of the internal system components, including the
CPU, memory, storage devices, etc communicate with
each other over one or more buses

• Memory bus: Connects the CPU and the memory
• Input/Output bus: Connects performance-critical

components (eg video cards, disk drives, etc) to the CPU
and the memory

• Performance of a bus is measured by the bandwidth: total
amount of data that can be transferred per second

• The width of the bus: the number of bits that can flow
simultaneously over the bus (eg 8-bit, 32-bit)

• The speed of the bus: the amount of data that can be
transferred per second (eg 66MHz, 800MHz)

• Bandwidth = Width × Speed (eg 8Gbits/second)



Structure of a Computer Machine Code and Assembly Language Low-Level and High-Level Language Programming Program Translation

Hard Disk

• Long-term memory
• Non-volatile
• Storage for Operating System, programs/applications and

data
• Organised into file systems, directories (“folders”) and files
• Electro-mechanical Magnetic media: Disk(s)
• Solid-State Drive: Flash memory



Structure of a Computer Machine Code and Assembly Language Low-Level and High-Level Language Programming Program Translation

MegaHertz and MegaBytes
• Hertz: Measure of frequency (Cycles per second)
• 1 KiloHertz = 1 000 Hertz = 1 000 cycles/second
• 1 MegaHertz = 1 000 000 Hertz = 1 000 000 cycles/second

• Byte: Measure of amount of information (8 bits)
• 1 KiloByte (KByte, KB) = 210 Bytes = 1024 Bytes
• 1 MegaByte (MByte, MB) = 220 Bytes = 1024 KBytes =

1 048 576 Bytes
• 1 GigaByte (GByte, GB) = 230 Bytes = 1024 MBytes =

1 073 741 824 Bytes
• 1 TeraByte (TByte, TB) = 240 Bytes
• 1 PetaByte (PByte, PB) = 250 Bytes
• 1 ExaByte (EByte, EB) = 260 Bytes
• 1 ZettaByte (ZByte, ZB) = 270 Bytes
• 1 YottaByte (YByte, YB) = 280 Bytes



Structure of a Computer Machine Code and Assembly Language Low-Level and High-Level Language Programming Program Translation

Decimal v Binary

Decimal Binary
1000 KiloByte KB 1024 KibiByte KiB
10002 MegaByte MB 10242 MebiByte MiB
10003 GigaByte GB 10243 GibiByte GiB
10004 TeraByte TB 10244 TebiByte TiB
10005 PetaByte PB 10245 PebiByte PiB
10006 ExaByte EB 10246 ExbiByte EiB
10007 ZettaByte ZB 10247 ZebiByte ZiB
10008 YottaByte YB 10248 YobiByte YiB



Structure of a Computer Machine Code and Assembly Language Low-Level and High-Level Language Programming Program Translation

Simple model of hardware

• The hardware of modern computers is very complex
• Programmers can ignore the low-level details of the

computer’s hardware and write programs using a much
simpler model (“abstraction”)

• However, sometimes it is necessary to know what is
happening at the lower level of detail, especially when a
program has to run as efficiently or as fast as possible



Structure of a Computer Machine Code and Assembly Language Low-Level and High-Level Language Programming Program Translation

Systems Software

• The Operating System is the single most important
program on the computer

• the Operating System has two main rôles:
• It acts as an interface between the user of the computer

and the computer’s hardware and software
• It facilitates the efficient use of the computer’s resources

• The Operating System is a program, like any other
• It runs continuously from boot-up and controls the running

of all other programs and applications
• Common Operating Systems include Unix, Linux, Microsoft

Windows, Apple OS X, Apple iOS, Android.



Structure of a Computer Machine Code and Assembly Language Low-Level and High-Level Language Programming Program Translation

Machine Code
• A CPU can only understand program instructions that are

expressed in terms of its machine language or machine
instruction set (Machine code)

• To illustrate the concept of a machine language program,
consider a simple CPU with a primitive machine language

• In this example, the operation (command to the control
unit) is stored in the first three bits of the instruction, and
the last five bits contain the operand, either the address of
the data to be operated upon by the instruction or an
address to which control is to be transferred



Structure of a Computer Machine Code and Assembly Language Low-Level and High-Level Language Programming Program Translation

Assembly Language
• In Assembly Language, we replace the numeric command

with a mnemonic
• We also replace numeric references to registers by labels

• The assembly language instructions directly reference
components of the hardware, such as the CPU’s registers



Structure of a Computer Machine Code and Assembly Language Low-Level and High-Level Language Programming Program Translation

Machine/Assembly Language Programming

• To write a program of any size in machine language or
assembly language is extremely difficult

• The instruction set is low-level, ie the model, or abstraction,
is very close to the details of the computer hardware

• It is difficult to determine the purpose of a program by
examining the code

• The instruction set is specific to a particular type of
computer architecture. Only machines which have the
same architecture can run the program. A completely new
program must be written for any new architectures

• In order to make software development cost-effective it is
necessary to have some way of writing programs which

• can be easily run on different architectures
• are easy to understand, modify and maintain



Structure of a Computer Machine Code and Assembly Language Low-Level and High-Level Language Programming Program Translation

High-Level Language Programming

• Hence the need for high-level languages such as Python
that are written for an abstraction that is close to the
problem representation and that can be translated to run
on many different types of computer architecture

• There are many other languages, such as C, C++, Java,
Perl, Fortran, Lisp. We could roughly attempt to organise
these languages from highest-level to lowest-level,
according to how close the language is to a
problem-oriented abstraction or to a hardware-oriented
abstraction.

• Python allows us to create programs that are largely
problem-oriented



Structure of a Computer Machine Code and Assembly Language Low-Level and High-Level Language Programming Program Translation

Program Translation

• The program written by the programmer is called the
source program

• A source program written in a high-level language must be
converted, or translated, into machine/assembly code in
order to run on the computer

• This process is called compilation and we say that a
program is compiled into machine/assembly code. The
program that does this is called the compiler

• The computer then executes (“runs”) the
machine/assembly language translation of the source
program

• Some languages are interpreted, ie the source code is
executed directly by an interpreter

• Python is an interpreted language


	Structure of a Computer
	Numbers
	Computer Hardware

	Machine Code and Assembly Language
	Low-Level and High-Level Language Programming
	Program Translation

