
Introduction to Computer Programming

This is an informal introduction to computer programming. It introduces the beginner to some
fundamental programming concepts such as: input/output, variables and control flow. The
high-level language Python, is used to illustrate the concepts. Python was chosen because of
its widespread popularity and use as a programming language However, you should not be
overly concerned with the details of the C language.

Overview
One point about programming must be clarified immediately: Anyone can learn to program
computers. This may or may not surprise you. Many people have misconceptions about what
skills you need to write computer programs e.g. do you need to be logical or mathematical or
interested in electronics? The author’s contention is, as already stated, that anyone can learn to
program. However, you must be willing to spend some time studying and practising. The same
applies to acquiring any skill such as driving a car, learning to swim, learning to play poker
and so on.

You can view programming as a skill acquired from study, training and practice. In order to
learn how to program, you will sooner or later have to use a computer. Learning to use the
computer is a separate and independent skill. In fact, strange as it may seem, you need to know
very little about using computers in order to program them! At the minimum, you need to know
how to switch on the computer, enter your program and have it executed. This can be mastered
in about an hour! The important point is, that using a computer is a separate skill to
programming one. When you have problems in your early days of programming, try to
identify whether they have to do with using the computer or with your programming ability.

There are two aspects to programming that must be mastered. One concerns problem solving
and the other concerns the programming language that is to be used. You must learn how to
solve problems. This is the core of programming. But you also must learn a programming
language to express your problem solution in, so that it can be carried out on a computer. Again,
these are two separate skills. You must try not to confuse them. It is difficult, however, to
explain one without reference to the other. In summary, a programmer must acquire three skills:

1. Computing skills - (how to switch on and use a computer).
2. Problem solving skills.
3. Programming language skills.

Computing Skills
These are the easiest to acquire and you most likely have them already. For the purposes of this
introduction, you need to know how to start your computer system, how to use a word processor
(or editor) to enter your programs and save them. Finally you need to be able run your programs
in Python.

Problem Solving
Computer programming is about problem solving. Every computer program solves some
particular problem, even programs to play games. It is impossible to write a computer program
unless you understand the problem you are being asked to solve. In programming, you solve
the problem, not the computer. A computer program describes to the computer what it must
do and how it is to be done. You give the computer instructions in the form of a program,
telling it what to do and how to do it. The set of instructions required to solve a problem is
a computer program. It is also the solution to the problem, because when the computer
follows these instructions, it will produce the answer i.e. the required results (assuming the
program is correct).

The term algorithm is used to describe the set of steps that solve a problem. An algorithm
may be expressed in English or in a formal computer language, whereas a computer program
must be expressed in a programming language. In programming, we first develop an algorithm
for the problem at hand, and then we translate this algorithm to a computer program, so that it
can be executed on a computer.

Sometimes we make mistakes in telling the computer what to do. We overlook part of the
problem or do not understand what to do ourselves. In these cases, the computer program will
not produce the “right answer”. It is, however, still solving a problem. It is simply not the
problem we wanted to solve. For this reason, it is important to thoroughly check that your
programs do indeed solve the problem you intended. It is important to note that this testing
does not prove that programs are correct, it shows that they are correct for the tests used.
Program correctness is a major area in computer programming and is not addressed here.

An important principle concerning problem solving is that we can, and should, solve problems
independently of any programming language. Only when we have solved a problem should we
consider the programming language. Beginners find this hard to understand, but it is worth
repeating that we do not need a programming language to solve problems. Of course, when it
comes to implementing our solution and testing it, then we must use a programming language.
We distinguish two phases in programming: the problem-solving phase (analysis phase,
design phase), and the implementation phase. It is very important to distinguish between these
phases and keep the two separate. Beginners (and others!) continually make the mistake of
rushing into the implementation without fully considering the problem to be solved. The
seriousness of this mistake is not too obvious when we write short programs of a few dozen
lines of code where we can easily scrap our ideas and start all over. But in large programs
consisting of hundreds or thousands of lines of code taking months to design and implement,
such an error can be extremely costly i.e. very time-consuming to correct.

Problem Solving Techniques
Given a problem to solve, where do we start? One important principle here is to “divide and
conquer”. In problem solving terms this means taking your problem and dividing it into
subproblems. Then you tackle each one of these separately. If necessary, divide the
subproblems into further subproblems. Continue this process of dividing into subproblems and
tackling each one separately until you can write the solution to each subproblem. When you
have solved all your subproblems, you have in effect, solved your initial problem. This
technique is used in many aspects of problem solving. For example, if you have to decorate an
entire house (a large problem), you typically divide the job into tasks to decorate the individual
rooms. Taking each room, you create separate tasks of decorating the walls, ceilings and floors.
When you have finished all these smaller tasks, the whole house will have been decorated and

the initial large problem solved. This same approach when applied to programming is called
top down programming. It is one of several programming techniques.

Another useful technique, which may be used in the conjunction with the above is to write
down all the input your program is going to work on. Then write down the output you expect
the program to produce. Solving the problem then becomes a question of transforming or
processing the input to produce the output. In order to write computer programs you must learn
to instruct the computer how to perform input, processing, and output operations. You must
learn the instructions that correspond to these operations. These instructions are given to the
computer in the form of a computer program which is written in a programming language.

1.1 Programming Languages
Just as people use differnetent languages to talk to each other, so you must use a language to
communicate with a computer. There are many programming languages which can be used
including C, C++, Java, Perl, Python and BASIC. These are called high-level languages
because they are problem oriented i.e. they are designed to help you solve problems. This
means that they have facilities that make it easier to implement the solution to problems than
so called low-level languages. There are also many low-level languages or assembly languages
which depend on the computer that is being used.

Most programmers will, at any time, typically be working with one language, although they
may be familiar with several. It is important to note again that a knowledge of programming
techniques is independent of any programming language. Armed with such a knowledge and
a knowledge of one programming language, it is quite straightforward to learn another
language. Put another way, the first programming language you learn will be the most
difficult. It is worth noting, that the experience of learning a second or third language, will
serve you well in increasing your understanding of programming.

One of the reasons for the variety of languages is that some languages are designed for
particular kinds of problem. Assembly languages are used where efficiency is extremely
important or where other languages cannot be used, because certain operations can be carried
out using assembly language that cannot be carried out using a high level language.

As we noted earlier, a given problem can be solved independently of a programming language.
You then have the choice of which language to use. Almost all languages will allow you do
the job but some make it easier by providing facilities that are useful for the particular task at
hand. Often, the decision as to which language to use is easy - if you only know one language,
you have no choice! Similarly, if your employer only wants Java programs, then you must
program in Java. Ideally, you should choose the language with the facilities best suited for the
problem at hand.

Language Structure
All languages have a grammar. This is a set of rules about what constitutes a valid sentence
in the language. A grammar helps people to communicate with each other. However, people
can still understand each other when they make grammatical mistakes. For example, if I write
in English: “I am going to town and I will bought some things”, my grammar is incorrect I
should have written “buy” in place of “bought” but you understand what I meant. This is a
fundamental aspect where computers differ from people. Computers do not understand
instructions, they simply carry them out. They must be given instructions that specify exactly
what they must do. If you make a mistake entering an instruction, a computer will not
understand the instruction and it will display an error message. This message means that there
is a mistake in your instructions - often a spelling error or a missing bracket or quotation mark.
For example, in a programming, just as in English, you must always have the correct number
of quotation marks and brackets. Left brackets such as (, { and [are called opening brackets.
The quotation marks at the start of a phrase:"(double) and ' (single) are called opening quotes.
Right brackets such as) , } and] are called closing brackets and quotation marks at the end of
a phrase closing quotes.

A simple rule is that for every opening bracket or quotation mark you must have a
corresponding closing bracket or quotation mark.

Example 1.1: Matching brackets and quotes:

“Hello“
(a > 10)
'x'
a[10]

Leaving out a bracket or quote, or misspelling, is called a syntax error. Each programming
language has its own syntax. When you make a syntax error you may get an unhelpful message
from the computer such as:

line 23 syntax error

which tells you that there is an error on line 23. You must figure out what is wrong. In fact, the
error may be on a previous line such as 21 or 22! The computer only detected that there was
an error when it reached line 23.

What to do when an error occurs
When a syntax error occurs, you must work out what mistake(s) you have made. This means
checking the statements of your program and seeing where the syntax is incorrect. You then
edit your program to correct the mistake. When you have corrected your program, it can be
translated into machine language and executed. To execute a program or to run a program
means that the computer carries out the instructions making up the program. This is just the
same as starting a word processor or spreadsheet. They too are programs which you run. They
are no different from the programs you write. To a computer, all programs are the same, in
the sense that they are all simply sets of instructions, telling the computer what to do.

Statements
When people communicate in any language, they use sentences to convey information. When
you write down a sentence in English, you have a full stop at the end. This tells us where the

sentence ends. Without it, it would be difficult to read English text. You could call the full stop
a sentence terminator i.e. it indicates the end of a sentence.

Similarly, when you write programs you also use sentences to communicate with the computer.
In programs, sentences are called statements. They also have a terminator. Different languages
use different terminators. Python statements use the end of line to terminate a statement:

 pension_age = 65
 my_age = 42

After you entered 65 you pressed the Return key on the keyboard to put star a new line – we
call this the newline character. Similarly after you entered 42, you also pressed Return thus
starying a new line and ending the current one.

You can use the semicolon “;“ as the statement terminator, which will allow you put two or
more statements on the same line.

pension_age = 65; my_age = 42

It is easier to read programs if we write statements one per line and I would strongly
recommend this approach.

Machine Code/Language –(Historically, computers were called machines)
Computers can only process instructions and data that are in binary form i.e. made up of
1’s and 0’s. They cannot directly process instructions written in programming languages such
as Java and Python. The language understood by a computer is called machine code. The first
computer programs were written in machine code. Writing programs in machine code is a
difficult and error prone task. As computing advanced, better languages which could be
understood by people were developed. The first of these were the assembly languages. Then
followed languages such as FORTRAN (for Science and Engineering applications) and
COBOL (for Business applications).

Remember that the machine can still only process machine code. So, to write programs in Java
or Python (which we can more easily understand), these programs must be translated into the
computer’s machine code. This translation is carried out by computer programs called
translators. There are different types of translators called assemblers, compilers and
interpreters. Compilers and interpreters take programs written in high level languages such as
Java, C and Python and translate them to machine code. In the case of Python we use an
interpreter. They also check them for syntax errors before producing the machine code
translation. If a translator discovers a syntax error, it displays the error message (as mentioned
earlier). The translator will only produce a machine code program if there are no syntax errors.
The machine code program is usually called an executable program. Assemblers are
translators that are used for assembly languages such as x8086 or M68000 assembly language.

Summary
To summarise, programming involves:

• solving problems

• expressing this solution in a computer language in the form of a program

• translating this program into machine language

• executing and testing the program

The Python Programming Language

Note: There are different versions of Python and we are using Python 3.

A Python program is made up of a group of statements. These statements allow us to control
the computer. Using them, we can display information on the screen, read information from
the keyboard, store information on disk and retrieve it and we can process information in
a variety of ways.

We can classify statements as:

 I/O statements,
variable manipulation statements (e.g. to do arithmetic) and
conditional statements (described later)

In this section we will look at I/O and variable manipulation. Associated with the different
types of statement is a set of special words called reserved words (keywords). Every
programming language has its own set of reserved words. These words have a special
meaning in the language and can only be used for particular purposes. The following are
some of the reserved words of the Python language that will be used in this text: int, if,
for, and while. All program code and variable names will be printed using the Courier
font in this text.

I/O Statements: Output
Output is the term used to describe information that the processor sends to peripheral devices
e.g. to display results on a screen or to store information in a disk file. One of the commonest
forms of output is that of displaying a message on your screen. In Python, we use print to
display output on the screen. The following print statement will display the message My
name is Beth. This is my first program on the screen

 print(“My name is Beth. This is my first program“)

This is a single Python program statement. To have it executed, it is stored in a file which we
call program1.py. This file was created by an text editor. The file contains the one line:

 print(“My name is Beth. This is my first program“)

To execute the program we use the command python3 which translates and runs the program:

% python3 program1.py
My name is Beth. This is my first program
%

Such a message is called a string constant as it will never change.

I/O Statements: Input and Variables
Input is the term used to describe the transfer of information from peripheral devices to the
computer e.g. input may come from the keyboard or from a disk file. Before we describe
input statements, let us consider where to store the information to be read in. We must
arrange to store the input so that it can be processed. This introduces the concept of
variables. A variable may be viewed as a container for a value.

Therefore to take input into a program we input data into a variable(s). But how do we
identify this variable and distinguish it from other variables? The solution is simple, we give
each variable a unique name, which we use to identify it. The following are examples for
variable names we could use in a Python program:

 colour
 my_age
 pension_age

name
taxcode22
temperature6

We can use any name we wish for variables with the exception of the reserved words that
Python uses.

Fundamental principle of writing clear programs

Choose meaningful names for variables,
because it makes your programs easier to understand.

For example, if you are writing a program which deals with pension ages then you could use
any of the following names to store the pension age but which one makes is easiest to
understand:
 pension_age

pa
p
x
pna

The variable name pension_age is the obvious choice. When you see this name you
automatically know what it the variable is being used for. If you use a name like p or x
then the name gives you no idea what the variable is being used for.

Tip: Use long variable names where they make sense.

Comments
In a Python program, any text after # is called a comment and is ignored by Python. They
are intended as text (documentation) to help explain to someone reading the program, what
the program does and how the program works. Comments are an important component of
programs. This is because when you read your programs some time after writing them, you
may find them difficult to understand, if you have not included comments to explain what
you were doing. They are even more important if someone else will have to read your
programs e.g. your tutor who is going to grade them! It is a useful idea to give the name of
the file containing the program, the authors name and the date on which the program was
written, as the first comments in any program as shown in the example above.

Example 1: Write a program to prompt the user to enter their favourite colour. The program
reads this colour and displays a message followed by the colour entered by the user. The
program may be written in Python as follows:

 # colour.py: Prompt use to enter colour and display a message
 # Author: Joe Carthy
 # Date: Oct 20 2022

favourite_colour = input(“Enter your favourite colour: “)

 print(“Yuk ! I hate “, favourite_colour)

If we execute the program the following appears on the screen (the bolded text is that entered
by the user. We will use this convention throughout the text).

Enter your favourite colour: blue
Yuk ! I hate blue

The variable favourite_colour is going to be used to store the characters that the user
types on the keyboard that is, it will store a list of characters. A list of characters is called a
string. Strings are used in almost every program we write.

Strings can also be represented by characters inside quotes (single or double):

“Enter your favourite colour: “
‘Enter your favourite colour: ‘

The input() statement does two tasks: it displays the string in quotes and then reads text
from the keyboard, (for example the word blue may be entered), and it places the text in the
variable favourite_colour.

The print() statement is used to display output on the screen. It can be used to display
strings and numbers.

print(“Yuk ! I hate “, favourite_colour)

instructs the computer to display the message Yuk ! I hate followed by the value of the
variable favourite_colour i.e. blue in this example.

When you use a variable name with print() it will display the value of a variable.

We can use input() to give values to variables and print() to display the value
contained in any variable. We use the expression “the value of a variable” to mean “the value
contained in a variable”. We take the phrase “the value of favourite_colour is blue”
to mean “the value contained in the variable called favourite_colour is blue”. We will use the
shorter form from now on.

From the program above, we see that print() has the ability to display messages enclosed in
quotation marks. But print() can also display the values of variables. For example:

 print (favourite_colour)

displays the value of the variable favourite_colour, which in this example is also a
string i.e. a list of characters.

Make sure you understand the difference between:

 print(“favourite_colour“)
and
 print(favourite_colour)

In the first case, a string constant is displayed, i.e. the word favourite_colour appears on the
screen. Any message inside quotes is called a string constant because every time you run the
program, it remains constant i.e. it does not change.

In the second case, the value of a variable called favourite_colour is displayed which could
be anything, for example the word blue or whatever value the user has given the variable like
red, pink and orange. You can store many words in a string variable.

More about variables: Assignment Statement
In Example 1, we saw that we can directly input a value into variable. There is also another
way to give variables a value. It is called assignment. It allows us to give a value to the
variable directly in a program without input. We may give the variable a constant value or
compute a value based on the values of other variables. For example, suppose we have a
variable called metres, to which we wish to give the value 12. In Python we write:

 metres = 12

This can be read as “metres is assigned the value 12” or “metres becomes 12”. Of
course, we could use any value instead of 12. Other examples of assigning values to
variables might be:

 centimetres = 50
 litres = 10
 metres = 4

Example 2: Write a program to convert metres to centimetres. A simple (and fairly useless)
Python program to do this is given below. This is version 1 of the program, other versions are
developed as we proceed through the chapter.

#convert.py: converts metres to centimetres
#Author: Joe Carthy
#Date: 21/10/2022

metres = 5
centimetres = metres * 100
print(“The number of centimetres is “, centimetres)

Executing this program produces as output:

% python colour.py
The number of centimetres is 500
%

Here we use the value of the variable metres to compute the value of the variable
centimetres.

Other examples of such an assignment are:

 pints = gallons * 8
 kilom = 4
 metres = 18
 cms = (kilom * 100000) + (metres * 1000)

where the values of variables on the right hand side are used to compute the values assigned
to the variables on the left hand side of the assignment.

The program to convert metres to centimetres as presented in Example 2 is very limited in
that it always produces the same answer. It always converts the same quantity of metres (5) to
centimetres. A more useful version would prompt the user to enter the number of metres to be
converted and display the appropriate result:

Example 3: Converting metres to centimetres, version 2.

#convert2.py: converts metres to centimetres version 2
#Author: Joe Carthy
#Date: 21/10/2022

metres = int (input(“Enter number of metres: “))

centimetres = metres * 100

print(metres, “ is “, centimetres)

Executing this program produces as output:
% python convert2.py
Enter number of metres: 4
4 metres is 400 centimetres
%

Important note: The input function reads from the keyboard and returns a list of
characters i.e. a string. Thus if we write

metres = input(“Enter metres”)

the variable metres will contain the string “4” as opposed to the number 4. This is very
confusing for beginners to programming. A fundamental aspect of variables is that they have
a type. The type of a variable tells you what kind of data it stores. In our early programs we
will use three types: int (whole numbers), float (numbers with decimal point) and string (list
of characters).

When you are working with numbers and wish to do arithmetic with them (add, subtract,
multiply and divide) then you must use the type int or float.

If you are storing a mobile phone number then you use a string because you will never use
arithmetic on a mobile phone number.

So it is crucial to understand the difference between the number 42 and the string “42” as
used in the following:

a = 42
b = b * 2

This results in b having the value 84.

x = “42”
y = x * 2

This results in y having the value 4242.

When you “multiply” a string variable by n you get n copies of the string e.g.

x = “bye”
y = x * 3

gives y the value “byebyebye”

This brings us back to the statement

metres = int (input(“Enter number of metres: “))

The int function converts the string from input to a number, in this case an int. This
means that metres now contains a number which we can do arithmetic with.

However, an int variable can only hold whole numbers i.e. number without a decimal place.
Thus our conversion program will only work when we enter whole numbers. If we wish to
work with floats (number with a decimal point also called real numbers) we need to convert
the type to float:

metres = float (input(“Enter number of metres: “))

The full programs is shown in Example 4.

Example 4: Converting metres to centimetres, version 3 using floats.

#convert3.py: converts metres to centimetres version 3
#Author: Joe Carthy
#Date: 21/10/2022

metres = float (input("Enter number of metres: "))

centimetres = metres * 100

print(metres, "metres is ", centimetres, " centimetres")

% python convert3.py
Enter number of metres: 3.5
3.5 metres is 350.0 centimetres
%

The output above is “crowded” in that there is no blank line before or after the output or
between the two lines of output. This makes it hard to read the output. You can use the “\n”
character in strings to start new lines.

The version below fixes this issue by putting one “\n” in the input() function and 3 in the
print() function.

convert4.py: converts metres to centimetres version 3
Outputs extra blank lines to make it easier to read the output

#Author: Joe Carthy
#Date: 21/10/2022

metres = float (input("\nEnter number of metres: "))

centimetres = metres * 100

print(“\n”, metres, "metres is ", centimetres, " centimetres\n\n")

When you run it, notice the extra blank lines

% python convert4.py

Enter number of metres: 3.5

3.5 metres is 350.0 centimetres

%

Some Fun making the computer beep!

When you use the “\a” character in the print() function, the computer makes a beep sound – it
does not display anything. So the program below simply plays 3 beeps.

beep.py: Just for fun - beep 3 times !!

print("\a \a \a")

Example: As another example of the use of I/O and variables consider a simple calculator
program. This program prompts for two numbers, adds them and displays the sum:

calc.py: Calculator program to add 2 numbers
Author: Joe Carthy
Date: 01/10/2022

number1 = float(input("\nEnter first number: "))

number2 = float(input("\nEnter second number: "))

sum = number1 + number2

print("\n\nThe sum of", number1, "and", number2, "is", sum, "\n\n")

calc.py outputs:

Enter first number: 2.4

Enter second number: 5.76

The sum of 2.4 and 5.76 is 8.16

Note in this program, we illustrate that a single print() can display the value of a number of
variables, in this case the values of three variables are displayed.

Arrays
An array is a named list of items such as characters, floats or integers. In programming
terminology, an array is an example of what is called a data structure.

Python does not have arrays ! But it does have strings and lists which are very similar.

It is easy to create a string in Python and we have already done in several earlier programs:

primary_colours = “red, orange, yellow, green, blue, indigo, violet”

colours = “pink, white, black, brown”

We can also use input() to create a string”

address = input(“\nEnter your address on 1 line”)

A string is made up of elements, in the examples above, the elements are the individual
characters that make up the string. We can access an element of a string, by using its position
also called its index or subscript e.g. address[0] refers to the first element in the address string,
colours[1] refers to the 2nd element in the colours string.

Python specifies that strings begin with index 0. While this seems unnatural, it is quite
common in computing to count from 0. So colours[0] is the character ‘p’, colours[1]
is the character ‘i’. You can access the characters in a string, one at a time using the index. The
index indicates which letter is required from the string. For example, consider the following
code:

animal = “elephant”

letter = animal[1]

letter now contain ‘l’

print(“first 3 letters are:”, animal[0], animal[1], animal[2])
displays the string
ele

Python allows you break strings into components called segments or substrings. In Python, a
segment of a string is called a slice. Selecting a slice is done in a similar way to selecting a
character, for example:

colours = “pink, white, black, brown”

seg1 = colours[0:4] # “pink”

seg2 = colours[6:8] # “wh”

seg3 = colours[10:14] # “e, b”

print (seg1, seg2, seg3)

colour[0:4] means extract the substring starting at 0 and ending at 3 (4-1) thus giving the
substring “pink”

colour[6:8] means extract the substring starting at index 6 and ending at 7 (8-1) thus giving
the substring “wh”

colour[10:14] means extract the substring starting at index 14 and ending at 13 (14-1) thus
giving the substring “we, b”

So in general we can use the formula

any_string[start:stop]

which means extract the substring starting at position start and ending at position stop -
1.

We will see in later programs that being able to break strings into slices is very useful.

Conditional Statements
People are used to making decisions. For example, consider the following sentences:

 If I get hungry, I will eat my lunch.
 If it gets cold, I will wear my coat.

These two sentences are called conditional sentences. Such sentences have two parts: a
condition part (“If I get hungry”, “If it gets cold”) and an action part (“I will eat my lunch”,
“I will wear my coat”).

The action will be only be carried out if the condition is satisfied. To test if the condition is
satisfied we can rephrase the condition as a question with a yes or no answer. In the case of the
first sentence, the condition may be rephrased as “Am I hungry ?” If the answer to the question
is yes, then the action will be carried out (i.e. the lunch gets eaten), otherwise the action is not
carried out.

We say the condition is true (evaluates to true) in the case of a yes answer. We say the
condition is false (evaluates to false) in the case of a no answer. Only when the condition is
true will we carry out the action. This is how we handle decisions daily.

In programming, we have the same concept. We have conditional statements. They operate
exactly as described above. One of the most fundamental of these is known as the if statement.
This statement allows us evaluate (test) a condition and carry out an action if the condition is
true.

In Python, the keyword if is used for such a statement. As an example, we could modify the
program to convert metres to centimetres to test if the value of metres is positive (greater than
0) before converting it to centimetres.

The action statement(s) are indented in Python. In the program below, both if statements have
action parts with 2 statements. The action statements end with the first non-indented statement
follow the if. Note you put a “:” after the condition in an if statement

convert5.py: converts metres to centimetres version 3
check quantity of metres is positive
Outputs extra blank lines to make it easier to read the output
Author: Joe Carthy
Date: 21/10/2022

metres = float (input("\nEnter number of metres: "))

if metres > 0:
 centimetres = metres * 100
 print(“\n”, metres, "metres is ", centimetres, " centimetres\n\n")

if metres <= 0:
 print(“\nPlease enter a positive number for metres\n”)
 print(“\nYou entered: ”, metres \n\n")

Executing this program with -42 as input produces as output:

Enter number of metres: -42
Please enter a positive value for feet

You entered -42

The first if statement tests if the value of metres is greater than 0 (metres > 0). If this is the
case, then the conversion is carried out and the result displayed. Otherwise, if the value of
metres is not greater than 0, this does not happen i.e. the 2 action statements are skipped.

The second if statement tests if metres is less than or equal to 0. If this is the case, then the
message to enter a positive value is displayed and the value entered is displayed. If this is not
the case the print is skipped and the program terminates.

In this particular example, only one of the conditions can evaluate to true, since they are
mutually exclusive i.e. metres cannot be greater than 0 and at the same time be less than or
equal to 0. Because this type of situation arises very frequently in programming i.e. we wish to
carry out some statements when a condition is true and other statements when the same
condition is false, a special form of the if statement is provided called the if-else statement.We
rewrite the above program to illustrate its usage:

convert6.py: converts metres to centimetres version 3
check quantity of metres is positive
Outputs extra blank lines to make it easier to read the output
Author: Joe Carthy
Date: 21/10/2022

metres = float (input("\nEnter number of metres: "))

if metres > 0:
 centimetres = metres * 100
 print(“\n”, metres, "metres is ", centimetres, " centimetres\n\n")

else:
 print(“\nPlease enter a positive number for metres\n”)
 print(“\nYou entered: ”, metres \n\n")

This program operates in the same way as the previous example. However, it is more efficient,
in that the condition has only to be evaluated once, whereas in first example, the condition is
evaluated twice.

Another example: The program below prompts the user to enter the number of hours worked
in a week and the rate of pay per hour. Workers can only work a maximum of 100 hours per
week and the maximum hourly pay rate is 50.

pay.py: Calculate and display hourly pay

hours_worked = float(input("\nEnter number of hours worked: "))

if hours_worked > 100.0 :
 print("\nHour worked too large:", hours_worked)
else:
 rate_per_hour = float(input("\nEnter rate per hour: "))
 if rate_per_hour > 50:
 print("\nRate per hour too high ", rate_per_hour)
 else:
 pay = rate_per_hour * hours_worked
 print("\nPay = ", pay, "for ", hours_worked, "hours")

Enter number of hours worked: 20

Enter rate per hour: 20

Pay = 400.0 for 20.0 hours

There are only six types of condition that can arise when comparing two numbers.

They can be tested for

1. equality - are they the same ?
2. inequality – are they different ?
3. is one greater than the other ?
4. is one less than the other ?
5. is one greater than or equal to the other ?
6. is one less than or equal to the other ?

The following illustrates how to write the various conditions to compare the variable feet to
the number 0 in C:

(feet == 0) is feet equal to 0?
(feet != 0) is feet not equal to 0?
(feet > 0) is feet greater than 0?
(feet < 0) is feet less than 0?
(feet >= 0) is feet greater than or equal to 0?
(feet <= 0) is feet less than or equal to 0?

Technically, the symbols ==, <>, <, >, <=, and >=, are called relational operators, since they
are concerned with the relationship between numbers.

We call a condition (e.g. feet < 0) a Boolean expression or a conditional expression. This
simply means that there are only two possible values (true or false) which the condition can
yield.

The term expression is widely used in programming. Informally it means something that yields
a value. We are familiar with arithmetic expressions such as 2+2 which evaluates to 4.

A Boolean expression is one which evaluates to either true or false.

Examples of expressions include constants (0, 100, ‘a’), variables (feet, inches) and arithmetic
expressions (feet * 12, 4 / 8).

The right-hand side of an assignment statement is always an expression.

As an example, let us modify the calculator program to handle either subtraction or addition.
The user is prompted for the first number, then for a ‘+’ or ‘-’ character to indicate the operation
to be carried out, and finally for the second number. The program calculates and displays the
appropriate result:

calc2.py: Calculator program to add 2 or subtract numbers
Author: Joe Carthy
Date: 01/10/2022

number1 = float(input("\nEnter first number: "))

operation = input(“\nEnter operation + or –“)

number2 = float(input("\nEnter second number: "))

if operation[0] == ‘+’:
 sum = number1 + number2
 print("\n\nThe sum of",number1,"and",number2, "is", sum, "\n\n")
else:
 diff = number1 - number2
 print("\n\nTaking ",number2,"from",number1, "is", diff, "\n\n")

Executing this program produces as output:

Enter first number: 9

Enter operation (+ or -): -

Enter second number: 4

Taking 4.0 from 9.0 is 5.0

Note we use the array element operation[0] to check the first character the user entered.

The above programs “assumes” that if the operator is not ‘+’ then it must be ‘-‘ but te user
could have hit the wrong key. The following version checks for ‘+’, ‘-‘ and the possibility that
it was neither ‘+’ or ‘-‘ that is the user made a mistake. User data entry mistakes are very
common and professional programs always check that the user input is as was expected.

We use a third variant of if in the program below called if .,. elif..else

calc3.py: Calculator program to add or subtract 2 numbers
Author: Joe Carthy
Date: 01/10/2022

number1 = float(input("\nEnter first number: "))

operation = input(“\nEnter operation + or –“)

number2 = float(input("\nEnter second number: "))

if operation[0] == ‘+’:
 sum = number1 + number2
 print("\n\nThe sum of",number1,"and",number2, "is", sum, "\n\n")
elif operation[0] == ‘-’:
 diff = number1 - number2
 print("\n\nTaking ",number2,"from",number1, "is", diff, "\n\n")
else:
 print(“\nInvalid operation only + and – allowed\n”)
 print(“You entered: “, operation[0])

Executing this program produces as output:

Enter first number: 9

Enter operation (+ or -): *

Enter second number: 4

Invalid operation – only + and – allowed
You entered: *

Fundamental Principles about conditionals

• A condition can only evaluate to true or false.

• The action(s) associated with a condition is carried out only if the condition is true.

Tip:
To evaluate a condition, simply re-phrase it as a question. The answer is yes for true and no
for false.

Conditions are basically comparisons. We compare two things and based on the comparison
(whether it is true or false) we take a certain course of action. Conditional statements allow you
alter the control flow in a program are thus called control structures. Control flow means the
order in which statements are executed. In our first programs, we had a linear control flow
– statements were executed in sequence one after another.

There are two basic types of control structure in programming. The if statement is called a
selection control structure. It allows you select an alternative action i.e. make a decision as

to what to do next. The other type of control structure is the loop (also called the iteration
control structure). A loop allows you repeatedly execute a statement(s).

Loops: Repeating parts of a program
So far, all our programs have carried out one major task such as converting a single quantity
of metres to centimetres. Frequently, we want to repeat such a calculation. Say we have thirty
values for metres which we want to convert to centimetres. Using the program described
earlier, we would have to run it 30 times to achieve the desired result. Programming languages
provide loops to allow us repeat part of the program as many times as we wish. For example,
in the conversion program we can write the program to repeat the process of reading a value to
be converted and displaying the result, 30 times or any number of times. This is called looping
(or iteration).

The while loop
There are a number of looping techniques, but basically all program looping can be performed
using one particular looping construct called a while loop. The other mechanisms are provided
for convenience. Loops are another form of conditional statement. In the case of a loop, we use
the condition to decide whether to repeat a statement or not. We repeat the statement based on
the evaluation of the condition in a similar fashion to carrying out the action part of an if
statement. The action part of a loop is referred to as the loop body. This may be a simple or
compound statement (group of statements). The loop body is executed only if the condition
evaluates to true, the condition is then re-evaluated to test if it is still true. If it is, we repeat
execution of the loop body and test the condition again. This process continues until the
condition evaluates to false.

In certain situations, the condition will never evaluate to false and the loop will continue to
execute endlessly. Such a loop (usually the result of a programming error) is called an endless
or infinite loop. An endless loop may be terminated by interrupting the program or switching
off the computer, both of which terminate the program as. To interrupt a program, a
combination of keys is pressed, such as pressing the control key and the C key simultaneously
(denoted by Ctrl/C). The operating system detects the interrupt and terminates the program.

Modify the calculator program to sum 5 pairs of numbers. In other words we wish to read in
the two numbers to be summed, calculate the sum and display the result, ten times, by running
the program once. We use a while loop to repeat the necessary statements:

calc4.py: Calculator program to add 2 numbers, five times
Author: Joe Carthy
Date: 01/10/2022

count = 1

while count <= 5:
 number1 = float(input("\nEnter first number: "))
 number2 = float(input("\nEnter second number: "))
 sum = number1 + number2
 print("\nThe sum of", number1, "and", number2, "is", sum, "\n\n")
 count = count + 1

print (“Finished summing\n”)

calc4.py outputs:

Enter first number: 4
Enter second number: 6
The sum of 4 and 6 is 10

Enter first number: 20
Enter second number: 30
The sum of 20 and 30 is 50

Enter first number: 65
Enter second number: 30
The sum of 50 and 65 is 115

Finished summing

The while statement tests the condition (count <= 5) and if it evaluates to true, the statements
in the loop body are executed and the condition is re-evaluated.

We assigned count the value 1 which is called initialising count or giving count an initial value.
When we first assign a value to a variable, we say we have initialised the variable.

Because count has the value 1, then the condition will evaluate to true and the loop body is
executed, increasing count by 1, so now it has the value 2.

When the condition is false i.e. when count reaches 6, we skip the action specified by the
loop body, and in this example, we execute the final print() statement and the program
terminates.

Each time we execute the loop body (go around the loop), we process one pair of numbers and
add 1 to count. The variable count is used in this example to control how many times we
execute the loop body. Such a variable is called the loop counter.

So after executing the loop action 5 times, count will have the value 6. Each time you execute
the loop, the condition is tested. You only execute the loop body if the result is true. So when
count has value 6, we leave the loop (the loop terminates), i.e. we go to the next statement after
the loop body if any.

What would happen if we omitted the statement

 count = count + 1 ;

from the loop body?

This is a very common error to make when using loops. If we omit the statement to increment
count, the loop will never terminate, as count will always be less than 5.

Such an error is a logical or runtime error. These differ from syntax errors because the
program can be executed but produces incorrect results. For this reason, they are a more serious
error than syntax errors. In large programs, it is very difficult to ensure that there are no logical
errors. Thorough testing of programs may increase our confidence that a program is correct,
but such testing on its own, can never establish the correctness of a program. It is important
to bear this fact in mind and it is worthwhile to investigate the area of program correctness.

Write a program to sum the integers 1 to 99 (i.e. calculate the sum of 1+2+3+...+99) and display
the result.

sum.py: calculate 1+2+3+.....+99
Author: Joe Carthy
Date: 01/10/2022

sum = 0 # contains the sum we wish to compute
i = 1 # the loop counter

while i <= 99:
 sum = sum + i
 i = i + 1

print(“Summation is: “, sum)

Executing this program produces as output:

Summation is: 4950

The loop body is executed only if the condition (i <= 99) evaluates to true. Since we have
initialised i to 1, the condition evaluates to true and the loop body is executed.

In the loop body, a running total for sum is calculated by adding the value of i to sum. The
variable sum is assigned the value sum + i. The variable i is then increased by 1.

We then test the condition again. The variable i now has the value 2 and the condition (i <=
99) remains true so we execute the loop body assigning sum the value 3 (1+2) and increasing
i to 3. Next time around the loop, sum becomes 6 (3+3) and i becomes 4. We test the condition
again and continue in this manner until i eventually reaches the value 100. When we test the

condition in this case, it evaluates to false (i.e. i is greater than 99) and so the loop body is not
executed. Instead we continue at the first statement after the loop body i.e. the print() statement.

Sometimes it is useful to put a print() in the loop body so you can see what’s happening and
also to get a better understanding of looping.

sum2.py: calculate 1+2+3+.....+99
Author: Joe Carthy
Date: 01/10/2022

sum = 0 # contains the sum we wish to compute
i = 1 # the loop counter

while i <= 99:
 sum = sum + i
 print(“\nSum = “, sum, “ i = “, i)
 i = i + 1

print(“\n\nSummation is : “, sum, “\n\n”)

Executing this program produces as output:

Sum = 1 i = 1

Sum = 3 i = 2

Sum = 6 i = 3

Sum = 10 i = 4
….
Summation is: 4950

Note: If a condition evaluates to false before executing the loop body, the loop body will
not be executed. In this case, the while loop behaves like an if-then statement.

Programmers often use the short variable names i, j, k, ... as loop counters.

Variable Initialisation
In the last two examples it is crucial that the variables count and i are initialised to appropriate
values for the loop to operate correctly. As a general programming principle, all variables
should be initialised to appropriate values, usually at the beginning of a program.

How Many Loop Iterations ?
Frequently we will not know in advance, how many times to repeat a loop, so that we can not
use the while loop in the manner presented above. Let’s rewrite the calculator program to
continue calculating for as long as the user requires. The user may wish to sum 1 pair of
numbers or 100 pairs. The user indicates if they wish to finish by entering 0 as the first number.
This type of loop is sometime referred to as a non-deterministic loop, as you do not know in
advance how many times it will be repeated.

Example: Sum pairs of numbers until 0 entered as first number

calc5.py: Calculator program to add 2 numbers until 0 entered
Author: Joe Carthy
Date: 01/10/2022

number1 = -1 # Any non-zero value will do
while number1 != 0
 number1 = float(input("\nEnter first number: "))
 number2 = float(input("\nEnter second number: "))
 sum = number1 + number2
 print("\n\nThe sum of", number1,"and",number2,"is",sum, "\n\n")

calc5.py outputs:

Enter first number: 1

Enter second number: 4

The sum of 1.0 and 4.0 is 5.0

Enter first number: 0

Enter second number: 8

The sum of 0.0 and 8.0 is 8.0

The program above is a poor one. It does stop after 0 has been input for the first number but it
first reads the second number and adds it to 0 and displays that result. We want the program
to stop after 0 has been entered as the first number:

In this example, we continue to execute the loop body as long as the user enters a non-zero
value for number1. The loop body will always be executed once in this example. Why? Because
the loop condition will always be true when the program begins execution, since number1 is
initialised to be -1 at the start of the program. The program below is an impoved version:

calc6.py: Calculator program to add 2 numbers until 0 entered
Author: Joe Carthy
Date: 01/10/2022

number1 = -1 # Any non-zero value will do

while number1 != 0:
 number1 = float(input("\nEnter first number: "))
 if number1 != 0:
 number2 = float(input("\nEnter second number: "))
 sum = number1 + number2
 print("\n\nThe sum of", number1,"and",number2,"is",sum, "\n\n")

print("\n\nCalculator program terminated \n")

This program runs as follows:

% python3 calc6.py

Enter first number: 3

Enter second number: 3

The sum of 3.0 and 3.0 is 6.0

Enter first number: 0

Calculator program terminated

As you can see from the above program, you can use any statement in the loop body including
more conditionals. This time, once we read the 1st number, we check if it is 0 and only if it is
not 0, will we read the 2nd number and display the result.

Debugging with Loops
As mentioned earlier, if you have difficulty understanding loops, it is a good idea when you
implement any of the above programs to put a print() statement in the loop body, so that you
can see how often the loop is repeated. For example statements such as the following could be
used in the examples presented earlier:

 print (“\ncount = “, count) ; # display value of count each time around the loop
 print (“\nsum = “, sum) ; # display value of sum each time around the loop

This is also a useful debugging technique. Debugging is the term used for finding and
correcting errors (bugs) in your program. By placing print() statements in your code, you can
trace (follow) the execution of your program, inspecting the values of variables and checking

if loops are executed the correct number of times. A print() in the action part of an if statement
allows you verify that the action was indeed carried out. When your program is working
correctly, these debugging print() statements are removed.

There are programs called debuggers which allow you execute your programs in an editor-like
environment. They allow you to stop your program at any statement you wish (called a break
point) and display the value of variables. You may even change the value of a variable and
resume the execution of your program. They are very useful tools for programmers.

Nested Loops
A loop may contain as part of its loop body any statement including another loop (called an
inner loop or nested loop). The nested loop may in turn contain a loop as part of its loop body
and so on.

Write a program to display 4 lines with 1 star (‘*’) character on line 1; 2 stars on line 2, 3 stars
on line 3 and 4 stars on line 4. The output should appear as follows:
*
**

.......

tri.py: displays triangle composed of *'s

num_lines = 1

while num_lines <= 4:
 num_stars = 1
 while num_stars <= num_lines: # inner loop
 print("*")
 num_stars = num_stars + 1 #end inner loop

 print("\n") # start new line
 num_lines = num_lines + 1 # end outer loop

The inner loop displays the correct number of * characters on each line. The outer loop controls
the number of lines displayed.

However, the above program does not work as intended. It displays the stars on new lines:

*

*
*

*
*
*

*
*
*
*

This is because the print() function adds the newline character at the end of the string. To stop
print() doing this, we add a new argument called end to the function, as follows:

print("*", end = "") # instructs print not to output newline at end

If we use this version of print() in the above program we get the following
output:

*

**

The range() function

This function returns a sequence of numbers in a given range for example

range(6) returns: 0,1,2,3,4,5 # integers up to but not including 6

range (4, 10) returns 4, 5 , 6, 7, 8, 9 # from 4 up to but not including 10

range (2, 12, 3) returns 2, 5 ,8, 11 # from 2 up to 12 in steps of 3

We can write these 3 forms of range in a general form:

range (stop) generate list from 0 to stop, not including stop

range(start, stop) generate list from start to stop, not including stop

range(start, stop, step) generate list from start to stop, not including stop,

by increments of size step

To generate a list starting at 0 up to 7

range (8) # yields 0, 1, 2, ,3 4, 5, 6, 7

To generate a list from 1 to 9:

range(1, 10) # yields 1, 2, ,3 4, 5, 6, 7, 8, 9

To generate list from 10 to 1

range(10, 0, -1) yields 10, 9, 8, … 2, 1

for Loop
There is another form of loop construct called the for loop. It is used when we know the number
of times we wish to repeat the loop body. We often use the for loop to process a list of items in
combination with the range() function.

The general form may be written as

for val in sequence:
 loop body statements

print first 5 integers
using python range() function

for i in range(5):
 print(i, end=" ")
print()

outputs: 0 1 2 3 4

print numbers from 5 to 20

for i in range(5, 20):
 print(i, end=" ")

outputs: 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

display range in steps of 2

for i in range(0, 10, 2):
 print(i, end=" ")
print()

outputs: 0 2 4 6 8

We can re-write the program to sum the integers 1 to 99 using a for loop as follows

sum3.py: Sum 1 + 2 + 3 + ... +99

sum = 0 # contains the sum we wish to compute
for i in range(1, 100):
 sum = sum + i

print("\nSummation is:", sum, "\n")

In this case, variable i starts with value 1 which is added to sum, then I becomes 2 which is
added to sum and so on until i becomes 99. Remember that range (1,100) generates the list
from 1 to 99 – the stop vale of 100 is NOT included in the list.

Modify the program tri.py to use for loops, to display 4 lines with 1 star (‘*’) character on line
1; 2 stars on line 2, 3 stars on line 3 and 4 stars on line 4.

#!/usr/bin/python3
tri3.py: displays triangle composed of *'s

num_lines = 1

for num_lines in range (1, 5): # outer loop
 for num_stars in range (1, num_lines+1): # inner loop
 print("*", end = "")

print("\n") # start new line

The inner loop displays num_lines stars on each line.

String Processing

We have used string variables and constants in our programs. In programming, we often wish
to “process” the elements of a string in various ways. We will show how to access and process
strings in the following examples. We need to know how long a string is when we are going to
process it. The len() function gives us the length of a string e.g.

l = len(“abcd”)
print (“l = “, l)
print(len(“123456”)

outputs
l = 4
6

Write a program to output the characters in a short string on separate lines.

str.py: Output each characters on a newline

string = "abc"
length = len(string)

for i in range (0, length):
 print(string[i])

print("\n\n")

outputs
a
b
c

Remember that strings always start at element 0.

Write a program to output the characters in a short string, separating them with the “&”
character.

str2.py: Output each characters of string followed by &

string = "abcdef"
length = len(string)

for i in range (0, length):
 print(string[i] + "&", end="")
print()

outputs

a&b&c&d&e&f&

Write a program to read a string and display it in reverse i.e. Joe is displayed as oeJ

str3.py: Read a string and display it in reverse

string = input("Enter a string: ")
length = len(string)

for i in range (length-1, -1, -1):
 print(string[i], end="")
print()

outputs

Enter a string: ABCDEF
FEDCBA

Pay particular attention to the range function used here.

Note the first element of a string in Python is element 0. In this example we entered a 6
character string. This means the elements are from 0 up to 5 (not 6). Thus to display the string
backwards we need to range from element 5 to element 0. This is why we subtract 1 from
length in the range function.

Also we need to include element 0 in the output, so we need to set the stop value in range to be
-1 e.g. range (5, 0, -1) will give us elements 5,4,3,2, 1 but NOT element 0. To include 0 we
need range(5, -1, -1) which means start at 5, step down by 1 each time and stop at 0.

File I/O

So far we have read input from the keyboard and displayed output on the screen. We will now
look at using files in our programs. Every computer system uses files to store data. This allows
information to be saved from one computation to another. Each operating system (eg Unix,
Linux, Windows, MAC OS, Android, . . .) comes with its own file system. A file system has
operations for creating, accessing, reading from, writing to and deleting files.

Accessing a file from within a Python program is done by using a file handle. Consider the
Python statement:

fileHandle = open(’junk.txt’, ’w’)

This invocation of the open function instructs the operating system to create a file with the
name junk.txt and returns a file handle for that file that is bound to the variable fileHandle.
We can use any variable name we wish e.g fh.

The second argument to the open function, “w”, indicates that the file is opened for writing.
This means that we wish to store information in the file - in programming terminology we
write to the file.

If the file junk.txt already exists then any previous contents of the file will be overwritten -–
take care not to destroy an existing file! If the file does not exist, it will be created.

We can open a file for reading which means we wish to read information from the file, using
“r” in open().

When we are finished using a file in a program, we should close the file eg.

fileHandle.fclose()

We can only have a limited number of files open in a program at any time (sometimes around
20, depending on the operating system). By closing files when we are finished with them, a
program can access 100’s of files but not all at the same time.

We can write a string address to a file by:

 fileHandle.write(address)

To read from a file, we must first call the open function with a second argument of “r”,
indicating that the file is opened for reading

 fh1 = open(’names.txt’, ’r’)

The function readline() reads a line from a file e.g.

 line = fh1.readline()

readline() returns the empty string "" if the file is empty or when you have reached the
end of the file i.e. there is no more data in the file.

It is good practice to make sure that a file exists before we open it for reading, because if the
file does not exist the open function fails and your programme will display an error such as :
Traceback (most recent call last):
File "/home/john/Documents/dept/comp10280/2015 fh1 = open(filename, ’r’)
IOError: [Errno 2] No such file or directory:

One technique to check if a file exists is to use the function

os.path.isfile(filename)

This returns True if filename is an existing file and eturns False otherwise

We need to include the line import os to access this function e.g. the following code fragment
prevents you from opening a file that does not exist.

import os

if not os.path.isfile(filename):
 print('File:' + filename + ' does not exist')
else:
 fh1 = open(filename, 'r’)

Terminating a Python script
There are times when you wish to terminate (quit, exit) a program immediately, for example,
when a data file you need to access does not exist, then stopping your program is the sensible
thing to do.

There are several ways to do this in Python but we will only use the sys.exit() function,
which “tidies up” before quitting your program – this means that for example any output to the
screen will be done before quitting and any open files will be closed. You need to import sys
to use this function.

import os
import sys
……
….

if not os.path.isfile(filename):
 print('File:' + filename + ' does not exist\n')
 print('Terminating program \n')
 sys.exit()

else:
 fh1 = open(filename, 'r’)
Some File I/O sample programs.

Program to create a file with 3 lines of text. We ask the use to specify the name of the file
to be created.

create.py: Create file with some lines of text

fname = input("\nEnter filename to be created: ")

fout = open(fname, "w") # Create new file

fout.write("Line 1 in the file\n")
fout.write("Line 2 in the file with more text\n")
fout.write("Line 3 Some more words and text 1 2 3 4 5 \n")
fout.close() # Close the file

Program to read and display the contents of a file specified by the user

read.py: Read lines from the file created by create.py
and prints them out

import os # Need this for path.isfile() function
import sys # Need this for sys.exit()

Get name of file to be read

filename = input("\nEnter file name: ")

Check whether the file exists

if not os.path.isfile(filename):
 print('File: ' + filename + ' does not exist')
 print('Quitting program')
 sys.exit()

else:
 fh1 = open(filename, 'r')

 line = fh1.readline() # read 1st line from file
 while line != "": # "" means end of file reached
 print(line, end = "")
 line = fh1.readline() # read next line from file

 fh1.close()

Program to read and display the contents of a file 10 lines at a time.

display10.py: Display a file 10 lines at a time

import os
import sys

finput = input("\nEnter name of file to display: ")

if not os.path.isfile(finput):
 print('File: ' + finput + ' does not exist \n')
 print('\nQuitting ..\n')
 sys.exit()

fin = open(finput, "r")

linecount = 1
finished = ""

text = fin.readline()

while (text != "") and (finished != 'q'):
 print(text, end = "")
 linecount = linecount + 1
 if linecount == 10:
 linecount = 1 # reset line count to 1 for next 10 lines
 finished = input("Enter q to quit or Press Return to continue ")
 text = fin.readline()

fin.close()

This program opens the file specified by the if it exists. It then reads a line from the file and enters a
loop:
 while not at end of file and user has not entered q
 Print the line from the file
 Count number of lines printed
 If count == 10 then

ask the user to quit or continue
reset number of lines printed to 1

 read next line from the file

Program to count and display the number of uppercase, lowercase and digits
in a file specified by the user

wc.py: Count uppercase, lowercase and digits in a file

import os
import sys

fname = input("\nEnter filename: ")

if not os.path.isfile(fname):
 print('File: ' + fname + ' does not exist \n')
 print('\nQuitting ..\n')
 sys.exit()

fin = open(fname, "r")

line = fin.readline() # Read 1st line

num_digits = 0 # Number of digits
num_lc = 0 # Number of lowercase letters
num_uc = 0 # Number of uppercase letters

while line != "": # while line not empty - not end of file
 for i in range(0, len(line)):
 if line[i] >= "0" and line[i] <= "9": # count the digits
 num_digits = num_digits + 1
 elif line[i] >= "A" and line[i] <= "Z":
 num_uc = num_uc + 1
 elif line[i] >= "a" and line[i] <= "z":
 num_lc = num_lc + 1

 line = fin.readline() # read next line from file

fin.close()

print("\nThe file ", fname, "contains: ")
print("\nUppercase letters: ",num_uc)
print("\nLowercase letters: ",num_lc)
print("\nDigits: ",num_digits, "\n\n")

Write a program to make a copy of a file, specified by the user.

copy.py: Make a copy of an existing file

import os
import sys
finput = input("\nEnter name of file to be copied: ")

if not os.path.isfile(finput):
 print('File: ' + finput + ' does not exist \n')
 print('\nQuitting ..\n')
 sys.exit()

fin = open(finput, "r")

foutput = input("\nEnter name of new file: ")
fout = open(foutput, "w") # Create new file

text = fin.readline()

while text != "":
 fout.writelines(text)
 text = fin.readline()

fout.close() # Close the files
fin.close()

print("\nFile ", finput, " copied to ", foutput, " \n")

Lists
We encounter lists in our daily lives such as

• shopping list of things to buy
• list of students in a class
• list of employees in a company

Programming languages provide us with a facility to handle lists. In some languages (C, C++, Java)
we call them arrays but in Python we use lists. We give the list a name and we can access the items in
the list using an index (subscript):– 0, 10, 1, n, 22 and i are examples of an index in the lists
below

• shop_list[0], shop_list[10]
• student[1], student[n]
• employee[22], employee[i]

Python is very flexible in what can be in a list – much more so than C or Java.

shop_list = ['bread', 'milk', 'coffee', 'sugar']

student = ['joe carthy', 'mary smith', 'tom', 'jack dunne']

grades = ['joe carthy', 'Maths', 60, 'Science', 70, 'History', 55]

employee = ['John Dun', 12, 40, 'Mary Smith', 10, 35, 'Jack Doyle', 10, 35]

li = []

The last example li is an empty list.

We access the elements of the list as follows using an index

shop_list[0] has value 'bread'

student[2] has value 'tom'

grades[4] has value 70

employee[7] has value 10

We can use a loop to process all of the items in a list as follows:

shop_list = ['bread', 'milk', 'coffee', 'sugar']

i = 0
while i < 4:
 print(shop_list[i])
 i = i+ 1

outputs

bread
milk
coffee
sugar

The first element in a list is always element 0

grades = ['joe carthy', 'Maths', 60, 'Science', 70, 'History', 55]

print('Grades for: ', grades[0], 'are')
i = 1
while i < 6:
 print(grades[i], grades[i+1])
 i = i+ 2

outputs

Grades for: joe carthy are
Maths 60
Science 70
History 55

We can have lists in side list ! For example

shop_list = ['bread', 'milk', 'coffee', 'sugar']
sweets = ['chocolate', 'mints', 'gums']

new_list = [shop_list, sweets]

new_list has value: [['bread', 'milk', 'coffee', 'sugar'], ['chocolate',
'mints', 'gums']]

L1 = [1, 2, 3, 4]
L2 = [L1, 9,10]

L2 has value: [[[1, 2, 3, 4], 9,10]

We can use a for loop to process the otems in a list

for i in range(4):

print(’Element ’, i, ’of list is: ’, shop_list[i])

will output:

Element 0 of list is: bread
Element 1 of list is: milk
Element 2 of list is: coffee
Element 3 of list is: sugar

Lists are mutable – this means that you can change individual elements of
the list e.g.

shop_list = ['bread', 'milk', 'coffee', 'sugar']

shop_list[1] = 'tea'
shop_list[3] = 'cake'
for i in range(4):

print(’Element ’, i, ’of list is: ’, shop_list[i])

will now output:

Element 0 of list is: bread
Element 1 of list is: tea
Element 2 of list is: coffee
Element 3 of list is: cake

You can see we have changed elements 1 and 3.

List comprehension
We often want to apply an operation to the elements of a list. Python provides what is called a list
comprehension to do this. For example, create a list of the integers squared from 0 to 6:

L = [x ** 2 for x in range(7)] # list comprehension
print(’L is:’, L)

produces the following output:

L is: [0, 1, 4, 9, 16, 25, 36]

Sample Program using lists to count the individual digits 0 to 9 that a user enters.

Program to use a list to count the number of different digits entered
Uses the number as an index into the list

#Initialise the counter list
countList = [0 for x in range(10)]

Prompt the user for a digit

number = int(input(’Enter a digit between 0 and 9: ’))

while number >= 0 and number <= 9:
 countList[number] += 1
 number = int(input(’Enter a digit between 0 and 9: ’))

for i in range(10): # display results
 print(’Number of ’, i, ’: ’, countList[i])
print(’Finished!’)

produces:

Enter a number (an int >= 0
and <= 3):

1

Enter a number (an int >= 0
and <= 3):

2

Enter a number (an int >= 0
and <= 3):

3

Enter a number (an int >= 0
and <= 3):

6

Enter a number (an int >= 0
and <= 3):

7

Enter a number (an int >= 0
and <= 3):

3

Enter a number (an int >= 0
and <= 3):

0

Enter a number (an int >= 0
and <= 3):

1

Enter a number (an int >= 0
and <= 3):

9

Enter a number (an int >= 0
and <= 3):

8

Enter a number (an int >= 0
and <= 3):

4

Number of 0: 1
Number of 1: 2
Number of 2: 1
Number of 3: 2
Number of 4: 1
Number of 5: 0
Number of 6: 1
Number of 7: 1
Number of 8: 1
Number of 9: 1
Finished!

We often want to initialise all elements of a list to a set value e.g. 0.

countList = [0 for x in range(4)]

can also be written as

countList = [0] * 4

countList in both cases is [0, 0, 0, 0]

Operations on Lists

len (list) returns the length of the list – the number of elements in it.

shop_list = ['bread', 'milk', 'coffee', 'sugar']
len(shop_list) is 4

list1 + list2 returns the concatenation of the two lists – the second list is added to the end of
the first list

shop_list = ['bread', 'milk', 'coffee', 'sugar']
sweets = ['chocolate', 'mints', 'gums']

new = shop_list + sweets

new is ['bread', 'milk', 'coffee', 'sugar', 'chocolate', 'mints', 'gums']

n * list returns a list that repeats list n times

L = [“abcd”]

2 * L is [“abcd”, “abcd”]

list[start:end] returns a slice of the list from position start to end but NOT including
list[end]

L = [1, 2, 33, 4, 8, 6]

L[2:5] is [33, 4, 8] # elements 2, 3, 4

e in list is True if e is contained in the list and False otherwise

new = ['bread', 'milk', 'coffee', 'sugar', 'chocolate', 'mints', 'gums']

if 'bread' in new:
 print('Yes bread in list')

will print

Yes bread in list

if 'car' in new:
 print('Yes car in list')
else:
 print(‘Car not in list’)

will print

Car not in list

Methods associated with Lists

List.append(e) adds the object e to the end of the list List

List = [1, 2, 3, 1, 16]

List.append(44) adds the object 44 to the end of List

Now List is [1, 2, 3, 16, 1, 44]

List.count(e) returns the number of times that e occurs in List

n = List.count(1) returns the number of times 1 occurs in List

n is now 2 because 1 occurs twice in List

List.insert(i, e) inserts the object e into List at index i

List = [1, 2, 3, 1, 16]

List.insert(2, 99) inserts the object 99 into List at index 2

Now List is [1, 2, 99, 3, 16, 1, 44]

List.extend(L1) adds the items in list L1 to the end of List

L = [1, 2, 3]
L1 = [‘a’, ‘b’, ‘c’]

L.extend(L1)

Now L is [1, 2, 3, ‘a’, ‘b’, ‘c’]

List.remove(e) deletes the first occurrence of e from List
(This method causes an error (raises an exception) if e is not in List)

L = [1, 2, 3, ‘a’, ‘b’, ‘c’]

L.remove(3)

Now L is [1, 2, ‘a’, ‘b’, ‘c’]

List.index(e) returns the index of the first occurrence of e in List
(This method causes an error (raises an exception) if e is not in List)

L = [1, 2, 3]
i = L.index(3)
i is now 2 because 3 occurs at position 2

List.pop(i) removes and returns the item at index i in List

If i is omitted, it defaults to -1, to remove and return the last element of List

L = [1, 2, 3, 4, 6]

x = L.pop()

Now L is [1, 2, 3, 4]

x is 6

y = L.pop(0)

Now L is [2, 3, 4]

y is 1

List.reverse() reverses the order of elements in List

L = [1, 2, 3]

L.reverse()

Now L is [3, 2, 1]

List.sort() sorts the elements in in List in ascending order

L = [1, 222, 3, 45, 6]

L.sort()

Now L is [1, 3, 6, 45, 222]

More about Strings

We have already looked at strings but now look at some more functions/methods associated with
strings.

len(str) returns the length of the string str

len("abcd") returns 4

s1 + s2 concatenates s2 onto end of s1

s1 = 'abc'
s2 = 'xyz'
s1 + s2 returns 'abcxyz'

n * str returns a string that repeats str n times

str = ‘abcd ’
2 * str returns ‘abcd abcd abcd ‘

e in str is True if e is contained in the str and False otherwise

str = 'bread gums blue black’

if 'bread' in str:
 print('Yes bread in string')

will print

Yes bread in string

if 'car' in str:
 print('Yes car in string')
else:
 print(‘Car not in string’)

will print

Car not in string

for x in str iterates over the string str

new = "ab ab cd"
for x in new:
 print(x)

will output the individual characters of the string
a
b

a
b

c
d

Methods on Strings

s.count(s1) returns the number of times that the string s1 occurs in s

s.find(s1) returns the index of the first occurrence of the substring s1 in s, and returns -1 if s1
does not occur in s

s.rfind(s1) the same as find, but starts from the end of s (the “r” in rfind stands for
“reverse”)

s = “ABBA”

t = s.lower() converts all uppercase letters in s to lowercase and stores them in t the string s
is unchanged

t now contains abba

s = s.lower() converts all uppercase letters in s to lowercase

s now has value: abba

t = s.upper() converts all lowercase letters in s to uppercase and stores them in t

t now contains ABBA

s.replace(old, new) returns list with all occurrences of the string old in s replaced by the
string new stores them in t

s = “ABBA abba”

t = s.replace(‘bb’, ‘xxxx’)

t now contains ABBA axxxxa

s = s.replace(‘A’, ‘a’)

s now contains aBBa abba

s.rstrip() removes trailing whitespace from s

Whitespace refers to the space character, tab character, newline, return character and formfeed i.e.
characters that you cannot see on the screen. Sometimes when you read a string from a file the
newline character will be part of the string at the end and you may want to remove it.

s.split(d) splits string s using d as a delimiter and returns the list of substrings making up s
If d is omitted, the substrings are separated by arbitrary strings of whitespace characters.

This is a really useful and commonly used method

s = ’Joe, John, Bill, Mary’

L = s.split(‘,’)

We split the string using the comma character as delimiter

Now L is [‘Joe’, ‘John’, ‘Bill’, ‘Mary’]

s = ’Joe John Bill Mary’

L = s.split()

In the above example we split the string using the space character as delimiter

Now L is [‘Joe’, ‘John’, ‘Bill’, ‘Mary’]

Say we have a string made up of a Name, rate of pay and hours worked. We can break the string into
its components:

s = ’Joe Bloggs 10.5 40’

L = s.split()

We can access the components in L

Name = L[0]

Rate_per_hour = float(L[1])

Hours_worked = float(L[2])

Name is now ‘Joe Bloggs’

Rate_per_hour is now 10.5

Hours_worked is now 40

We can now process the components for example to calculate the pay for the employee.

Finally strings are immutable – this means that you cannot change the individual characters of a
string e.g.

s=’AbbA’

You cannot use
s[0] = ‘b’

to overwrite character [0] in the string.

guess3.py: Guess the secret word
Ignores case of words e.g. BLUE matches bluE

secret = "Blue"
guess = " "
num_chances = 1
secret = secret.lower() # convert to lowercase
while (guess != secret) and (num_chances <= 3) :
 guess = input("Guess the secret word: ")
 guess = guess.lower() # convert to lowercase
 if guess != secret:
 print("\nWrong guess: ", guess)
 num_chances = num_chances + 1
 else:
 print("Well done !")
if num_chances > 3:
 print("Sorry you have used all of your guesses")
 print("The secret word was: ", secret)

Running guess3.py:
Guess the secret word: man
Wrong guess: man
Guess the secret word: dog
Wrong guess: dog
Guess the secret word: cat
Wrong guess: cat
Sorry you have used all of your guesses
The secret word was: blue

Running guess3.py:
Guess the secret word: black
Wrong guess: black
Guess the secret word: BLUE
Well done !

Using a text editor create a “telephone directory” text file called “tel.dat” with entries of the form

 Joe Bloggs 087 6767676767
 Fred Smith 085 567812345678
 Mary Anyone 085 12345657789

[Text editor:
A text editor produces a text file e.g. Notepad (Windows), Textedit or Gvim (Mac) (if using MS
Word, save the file as a text file not a “.doc” file).]

Write a Python program called tel to search the file for any text in the file.

Usage:
 $ python3 tel
What are you searching for or Press Enter to quit: joe

Output:

 Joe Bloggs 087 6767676767
 $
or
 $ python3 tel

What are you searching for or Press Enter to quit: 085

Output:

 Fred Smith 085 567812345678
 Mary Anyone 085 12345657789

 $ python3 tel

What are you searching for or Press Enter to quit: xxx

Output:

 xxx not found in file

 $ python3 tel

What are you searching for or Press Enter to quit: j

Output:

 Joe Bloggs 087 6767676767

tel.py: Search list for what user is looking for

import os
import sys

fname = "tel.dat"

if not os.path.isfile(fname):
 print('File: ' + fname + ' does not exist')
 print('Quitting ...\n')
 sys.exit()

fh1 = open(fname, "r") # Open data file
inline = fh1.readline()

search = input("\nEnter text you are searching for or Press Enter to quit:")
search = search.lower() # convert to lowercase

while inline != "":
 line = inline.lower() # convert to lowercase
 if line.find(search) != -1: #if search text in current line
 print(inline)
 inline = fh1.readline()

fh1.close() # Close the file

The tel.py program first checks if the data file “tel.dat” exists and quits if the file does not exist.
Otherwise it opens the file and reads the first line.

It then askes the user to enter the search text or Enter to quit. It converts the search text to lowercase.

It then goes into a loop:
 Converts the line form the file to lowercase
 Compares the line with the search text (both are in lowercase).
 If they match, it prints out the line from the file (inline) in its original case
 Reads next line from the file
When all lines have been read from the file, the program terminates.

The version of tel.py above only allows the user to search for one string before quitting. We now
rewrite the program to allow the user to continue searching until they decide to quit.

To do this, we add an outer loop:
 While user has not pressed Enter
 Go back to the start of the file

ask the user to enter the search text or Enter to quit
Go into inner loop until end of file reached:

 Converts the line form the file to lowercase
 Compares the line with the search text (both are in lowercase).
 If they match, it prints out the line from the file (inline) in its original case
 Reads next line from the file
 Check if user text was found in file and print message if it was not found

We use the method (function) seek(0) to go back to the start of the file.

The call
 fh1.seek(0)

brings us to the start of the file that fh1 is associated with. When you read from a file, the operating
system remembers where you finished reading. Your next read will start from that position. In our
program, we read to the end of the file in the inner loop. When we wish to start a new search then we
must go back to the start of the file. The seek(0) function tells the operating system to do this.

tel2.py: Search list for what user is looking for

import os
import sys

fname = "tel.dat"

if not os.path.isfile(fname):
 print('File: ' + fname + ' does not exist')
 print('Quitting ...\n')
 sys.exit()

fh1 = open(fname, "r") # Open data file
search = " "
while search != "":
 found = False
 fh1.seek(0) # Go to start of file
 inline = fh1.readline() # read 1st line from file

 search = input("\nEnter text you are searching for or Press Enter to quit: ")
 lower_search = search.lower() # convert to lowercase

 while (inline != "") and (lower_search != ""): # Search file
 line = inline.lower() # Convert lowercase
 if line.find(lower_search) != -1: # if text in current line
 print(inline)
 found = True
 inline = fh1.readline() # Read next line from file
 # & end of inner loop

 if (inline == "") and (found == False):
 print("\n", search, "not found in file\n") # end of outer loop

fh1.close() # Close the file

The above program is inefficient in that it reads the entire file for every search. Accessing a file on disk is
very slow compared to accessing the same information in the computer’s memory. We can make the program
more efficient by read all the lines of the file into a list of lines – we only need to do this once. We then
search this list for the information as often as we wish. Since the list is in the computer’s memory, it is more
efficient. However, for small files you will not notice any difference in performance as computers are very
fast! We now implement a version of the program above with lists.

tel3.py: Search list for what user is looking for using lists

import os
import sys

fname = "tel.dat"

if not os.path.isfile(fname):
 print('File: ' + fname + ' does not exist')
 print('Quitting ...\n')
 sys.exit()

fh1 = open(fname, "r") # Open data file
numlines = 0 # number of lines in the file

Read file into list
list = []

inline = fh1.readline() # read 1st line from file
while inline != "":
 list.append(inline) # add line to end of list
 inline = fh1.readline() # read next line
 numlines = numlines + 1 # count lines

list now contains all lines from the file

fh1.close() # close file

search = input("\nEnter text you are searching for or Press Enter to quit: ")
lower_search = search.lower() # convert to lowercase

while search != "":
 found = False
 i = 0 # index into list - start at list[0]

 while (numlines > i) and (lower_search != ""):
 line = list[i].lower()
 if line.find(lower_search) != -1:
 print(list[i])
 found = True
 i = i + 1
 if (numlines == i) and (found == False):
 print("\n", search, "not found in file\n")

 search = input("\nEnter text you are searching for or Press Enter to quit: ")
 lower_search = search.lower() # end of outer loop

Notes: We start with an empty list - list = [] and append on to the end of the list each line we read
from the file using list.append(inline). When we have read all lines from the file, numlines

will record the number of lines in the file. We now close the file and search list for the user entries. The
inner loop uses numlines to detect when it has reached the end of the list.

In the above program, instead of counting the lines in the file in the first while loop, after we have read in
the list, we could use the len function compute the length of the list which is the number of lines in the
file:

numlines = len(list)

More on print() function and displaying variables

Take the following variables and how we want to display them:

Name = ‘Joe Bloggs’
rate = 10.00
num_hours = 40
pay = rate * num_hours

print(“Pay for “, name, “at “, rate, “per hour is”, pay)

outputs

Pay for Joe Bloggs at 10.0 per hour is 400.0

There is a simpler way to display this message with print using f-strings:

print(f“Pay for {name} at {rate} per hour is {pay}”)

displays the same output as the first print() above.

Pay for Joe Bloggs at 10.00 per hour is 400.00

Note: We must put the character f before we start the string in print().

When using an f-string, we enclose any variable we wish to display in {} brackets. print() The
will display the value of each variable in {}.

Displaying a fixed number of decimal places

In most of our calculations it is common to display the results with 2 decimal places. We can
use an f-string to do this.

x = 19/3.768

On my system if I print x it will display as 5.042462845010616

To print x to 2 decimal points

print(f"x = {x:.2f}")

outputs

x = 5.04

x:.2f specifies to print the value of x to decimal places. You can change the number from
2 to whatever you wish, to have that number of places displayed after the decimal point.

