
Files Writing to a file Using filesReading from a file Common functions for accessing files

Outline

Files

Writing to a file

Reading from a file

Common functions for accessing files

Using files

Files Writing to a file Reading from a file Common functions for accessing files Using files

Files

• Every computer system uses files to store data

• This allows information to be saved from one computation
to another

• Each operating system (eg Unix, Linux, Windows, MAC
OS, Android, . . .) comes with its own file system

• A file system has operations for creating, accessing,
reading from, writing to and deleting files

• Accessing a file is done by using a file handle

Files Writing to a file Using filesReading from a file Common functions for accessing files

File handle

• Consider the following Python statement:
fileHandle = open(’names.txt’, ’w’)

• This invocation of the open function instructs the operating
system to create a file with the name names.txt and
returns a file handle for that file that is bound to the
variable fileHandle

• The second argument to the open function, “w”, indicates
that the file is opened for writing

• Any previous contents of the file will be overwritten

– take care not to destroy an existing file!

Files Using filesWriting to a file Reading from a file Common functions for accessing files

Common functions for accessing files (1)

• The following are some of the common functions for
accessing files:

• open(fn, ’w’) fn is a string representing a file name.
Creates a file for writing and returns a file handle

• open(fn, ’r’) fn is a string representing a file name.
Opens an existing file for reading and returns a file handle

• open(fn, ’a’) fn is a string representing a file name.
Opens an existing file for appending and returns a file
handle

• fh.close() closes the file associated with the file handle
fh

Files Writing to a file Using filesReading from a file Common functions for accessing files

Writing to a file (1)
Program to demonstrate the use of files
Prompts the user for a given name and a family na

Open the file for reading
fileHandle = open(’names.txt’, ’w’)

Prompt the user for a given name
givenname = input(’Enter a given name: ’)
fileHandle.write(givenname)

Prompt the user for a family name
familyname = input(’Enter a family name: ’)
fileHandle.write(familyname)

fileHandle.close()

Files Writing to a file Using filesReading from a file Common functions for accessing files

Writing to a file (2)

• Running this program with the following interaction:
>>>
Enter a given name: John
Enter a family name: Dunnion
>>>

The contents of the file names.txt are as follows:

JohnDunnion

• If we want different strings to appear on different lines in
the file, we must include a newline character when writing
each string to the file

Files Writing to a file Using filesReading from a file Common functions for accessing files

Writing to a file (3)
Program to demonstrate the use of files
Prompts the user for a given name and a family na
and writes them to a file with newlines

Open the file for writing
fileHandle = open(’names.txt’, ’w’)

Prompt the user for a given name
givenname = input(’Enter a given name: ’)
fileHandle.write(givenname + ’\n’)

Prompt the user for a family name
familyname = input(’Enter a family name: ’)
fileHandle.write(familyname + ’\n’)

fileHandle.close()

Files Writing to a file Using filesReading from a file Common functions for accessing files

Reading from a file (1)

• To read from a file, we must call the open function with a
second argument of “r”, indicating that the file is opened
for reading

fh1 = open(’names.txt’, ’r’)

The function readline() reads a line from a file e.g.

line = fh1.readline()

readline()returns the empty string " " if the file is empty

or when you have reached the end of the file

Files Writing to a file Using files

Program to demonstrate the use of files
Reads names from a file and prints them out

Open the file for reading

fh1 = open('names.txt', 'r')

line = fh1.readline() # read 1st line from file

while line != "": # "" means end of file reached
print(line, end = "")
line = fh1.readline() # read next line

fh1.close() # close file

Files Writing to a file Using files

Program to demonstrate the use of files
Reads names from a file and prints them out
Prompt the user for a file name

filename = input(’Enter a file name: ’)

Open the file for reading
fh = open(filename, ’r’)

line = fh.readline() # read 1st line from file

while line != "": # "" means end of file reached
print(line, end = "")
line = fh.readline() # read next line

fh.close() # close file

Files Writing to a file Using filesReading from a file Common functions for accessing files

Reading from a file (4)

• Assume names.txt contains 2 lines

John

Dunnion

• The output of running the program is the following:
Enter a file name: names.txt
John

Dunnion

Files Using filesWriting to a file Reading from a file Common functions for accessing files

Common functions for accessing files (2)

• fh.readline() returns the next line in the file
associated with the file handle fh

If a blank line is read, a newline (\n) will be returned.

If an empty string (“”) is returned, the end of file (EOF)
has been reached

• fh.write(s) writes the string s to the end of the file
associated with the file handle fh

Files Using filesWriting to a file Reading from a file Common functions for accessing files

Checking for a file’s existence (1)

• Toprogram defensively/carefully/sensibly(!!), we should
make sure that a file exists before we open it for reading

Enter a file name: names1.txt

Traceback (most recent call last):
File "/home/john/Documents/dept/comp10280/2015
fh1 = open(filename, ’r’)

IOError: [Errno 2] No such file or directory:

• We might also want to check whether a file exists before
opening it for writing

• Why?

Files Using filesWriting to a file Reading from a file Common functions for accessing files

Checking for a file’s existence (2)

• To check for a file’s existence, we can use a number of
techniques

• One technique is to use the function
os.path.isfile(path)

• This returns True if path is an existing regular file and
returns False otherwise

• We need to include the line import os to access this
function e.g.

import os

Files Using files

Checks that the file exists first
import os
Prompt the user for a file name
filename = input(’Enter a file name: ’)
Check whether the file exists

if not os.path.isfile(filename):
print('File:' + filename + ' does not exist')

else:
fh1 = open(filename, 'r’)

line = fh1.readline() # read 1st line from file
while line != "":

print(line, end = "")
line = fh1.readline()

fh1.close()

Files Using files

Write a program to read daily rainfall amounts and store them in a file

write_rain.py: Create file to store daily rainfall amounts in mm

fname = input("\nEnter filename to be created: ")

fout = open(fname, "w") # Create new file

text = input("\nEnter raifall amount or Press Enter to quit: ")

while text != "":
fout.writelines([text, "\n"])
text = input("\nEnter rainfall amount or Enter to quit: ")

fout.close() # Close the file

print("\nFile: ", fname, "created \n")

Files Using files

Running write_rain.py

Enter filename to be created: rain.txt

Enter raifall amount or Press Enter to quit: 12

Enter rainfall amount or Enter to quit: 10

Enter rainfall amount or Enter to quit: 5

Enter rainfall amount or Enter to quit:

File: rain.txt created

Files Using files

Check the contents of rain.txt

% cat rain.txt

12
10
5
%

Files Using files

Write a program to calculate and display average, minimum and maximum
daily rain fall using data in file created by write_rain.py

read_rain.py: Calculate and display average, minimum and maximum
import os
import sys

fname = input("\nEnter filename containing rainfall data: ")

if not os.path.isfile(fname):
print('File: ' + fname + ' does not exist \n’)
print('\nQuitting ..\n’)
sys.exit()

fin = open(fname, "r")

line = fin.readline() # Read 1st line
if line != "" : # Check there was data in the file

daily_rain = float(line)
min_rain = daily_rain # Set minimum rainfall in a day
max_rain = daily_rain # Set max rain in a day
total_rain = 0 # Average = total amount/ number of days

num_days = 0 # Number of days rain in file

Files Using files

Running write_rain.py

while line != "": # while line not empty - not end of file
total_rain = total_rain + daily_rain
num_days = num_days + 1
if (daily_rain > max_rain):

max_rain = daily_rain
if (daily_rain < min_rain):

min_rain = daily_rain
line = fin.readline() # read next line from file

if line != "":
daily_rain = float(line) # end of while loop

fin.close()

if num_days > 0: # if there was data in the file
average_rain = total_rain / num_days
print("\nAverage daily rain: ", average_rain)
print("\nMinimum daily rain: ", min_rain)
print("\nMaximum daily rain: ", max_rain)
print("\nNumber of days: ", num_days, "\n\n")

else:
print("No data in: ", fname, "\n")

Files Using files

Running read_rain.py

Enter filename containing rainfall data: rain.txt

Average daily rain: 9.0

Minimum daily rain: 5.0

Maximum daily rain: 12.0

Number of days: 3

