Eiles

Outline

Files

Writing to a file

Reading from a file

Common functions for accessing files

Using files

Eiles

it f Reading from a fi C functions f ing fi ing i

Files

Every computer system uses files to store data

This allows information to be saved from one computation
to another

Each operating system (eg Unix, Linux, Windows, MAC
OS, Android, ...) comes with its own file system

A file system has operations for creating, accessing,
reading from, writing to and deleting files

Accessing a file is done by using a file handle

Eiles

File handle

Consider the following Python statement:

fileHandle = open(’'names.txt’, ’'w’)

This invocation of the open function instructs the operating
system to create a file with the name names . txt and

returns a file handle for that file that is bound to the
variable fileHandle

The second argument to the open function, “w”, indicates
that the file is opened for writing

Any previous contents of the file will be overwritten

- take care not to destroy an existing file!

Eiles

Wiiting to fle Reading from a file Common functions for accessing files Using fles

Common functions for accessing files (1)

The following are some of the common functions for
accessing files:

open (fn, ’w’) fnis a string representing a file name.
Creates a file for writing and returns a file handle

open (fn, ’r’) fnis a string representing a file name.
Opens an existing file for reading and returns a file handle
open (fn, ’a’) fnis a string representing a file name.
Opens an existing file for appending and returns a file
handle

fh.close () closes the file associated with the file handle
fh

Writing to a file (1)
Program to demonstrate the use of files
Prompts the user for a given name and a family na

Open the file for reading
fileHandle = open(’names.txt’, 'w’)

Prompt the user for a given name
givenname = input ('Enter a given name: ')
fileHandle.write (givenname)

Prompt the user for a family name
familyname = input (’Enter a family name: ')

fileHandle.write (familyname)

fileHandle.close ()

Eiles

Writing to a file (2)

+ Running this program with the following interaction:
>>>
Enter a given name: John
Enter a family name: Dunnion
>>>
The contents of the file names . txt are as follows:
JohnDunnion

- If we want different strings to appear on different lines in
the file, we must include a newline character when writing
each string to the file

Eiles

Writing to a file (3)
Program to demonstrate the use of files
Prompts the user for a given name and a family na

and writes them to a file with newlines

Open the file for writing
fileHandle = open (' names.txt’,

IWI>

Prompt the user for a given name
givenname = input ('Enter a given name: ')
fileHandle.write (givenname + ’'\n’)

Prompt the user for a family name
familyname = input (’Enter a family name: ')

fileHandle.write (familyname + ’‘\n’)

fileHandle.close ()

Eiles

Reading from a file (1)

+ To read from a file, we must call the open function with a
second argument of “r”, indicating that the file is opened
for reading

fhl = open('names.txt’, 'r’)

The function readline () reads a line from a file e.g.
line = fhl.readline ()

readline () returns the empty string " " if the file is empty

or when you have reached the end of the file

Eiles e fi ing i

Program to demonstrate the use of files
Reads names from a file and prints them out

Open the file for reading
fhl = open('names.txt', 'r'")

line = fhl.readline() # read 1lst line from file

while line != "": # "" means end of file reached
print (line, end = "")
line = fhl.readline() # read next line

fhl.close () # close file

Program to demonstrate the use of files
Reads names from a file and prints them out
Prompt the user for a file name

filename = input ('Enter a file name: ')

Open the file for reading
fh = open(filename, ’r’)

line = fh.readline() # read 1lst line from file
while line != "": # "" means end of file reached
print (line, end = "")
line = fh.readline() # read next line

fh.close () # close file

Eiles

Reading from a file (4)

« Assume names.txt contains 2 lines
John

Dunnion

+ The output of running the program is the following:
Enter a file name: names.txt
John

Dunnion

Eiles

Wiiting to fle Reading from a file Common functions for accessing files Using fles

Common functions for accessing files (2)

« fh.readline () returns the next line in the file
associated with the file handle £h

If a blank line is read, a newline (\n) will be returned.

If an empty string (*”) is returned, the end of file (EOF)
has been reached

« fh.write (s) writes the string s to the end of the file
associated with the file handle th

Eiles

VVriting to a file Reading from a file Common functions for accessing files Using files

Checking for a file’s existence (1)

« Toprogram defensively/carefully/sensibly(!!), we should
make sure that a file exists before we open it for reading

Enter a file name: namesl.txt

Traceback (most recent call last):
File "/home/john/Documents/dept/compl0280/2015
fhl = open(filename, 'r’)
IOError: [Errno 2] No such file or directory:
+ We might also want to check whether a file exists before
opening it for writing
« Why?

Eiles

Wiiting to fle Reading from a file Common functions for accessing files Using fles

Checking for a file’s existence (2)

- To check for a file’s existence, we can use a number of
techniques

+ One technique is to use the function
os.path.isfile (path)

 This returns True if path is an existing regular file and
returns False otherwise

« We need to include the line import os to access this
function e.g.

import os

Checks that the file exists first
import os

Prompt the user for a file name
filename = input ('Enter a file name: ')
Check whether the file exists

if not os.path.isfile(filename) :
print ('File:' + filename + ' does not exist')

else:
fhl = open(filename, 'zr’)

line = fhl.readline() # read 1lst line from file

|l— wn,

while line
print(line, end = "")
line = fhl.readline ()

fhl.close()

Write a program to read daily rainfall amounts and store them in a file

write_rain.py: Create file to store daily rainfall amounts in mm
fname = input("\nEnter filename to be created: ")

fout = open(fname, "w") # Create new file

text = input("\nEnter raifall amount or Press Enter to quit: ")
while text != "":

fout.writelines([text, "\n"])

text = input("\nEnter rainfall amount or Enter to quit: ")
fout.close() # Close the file

print("\nFile: ", fname, "created \n")

Running write_rain.py

Enter

Enter

Enter

Enter

Enter

File:

filename to be created: rain.txt

raifall amount or Press Enter to quit: 12

rainfall amount or Enter to quit: 10

rainfall amount or Enter to quit: 5

rainfall amount or Enter to quit:

rain.txt created

Check the contents of rain.txt

% cat rain.txt

12
10
5

o\

Write a program to calculate and display average, minimum and maximum
daily rain fall using data in file created by write_rain.py

read_rain.py: Calculate and display average, minimum and maximum
import os
import sys

fname = input("\nEnter filename containing rainfall data: ")
if not os.path.isfile(fname):
print('File: ' + fname + ' does not exist \n’)
print('\nQuitting ..\n’)
sys.exit()

fin = open(fname, "r")

line = fin.readline() # Read 1st line

if line !I= "" : # Check there was data in the file
daily_rain = float(line)
min_rain = daily_rain # Set minimum rainfall in a day
max_rain = daily_rain # Set max rain in a day

total_rain = @ # Average = total amount/ number of days
num_days = 0 # Number of days rain in file

Running write_rain.py
while line != "": # while line not empty - not end of file
total_rain = total_rain + daily_rain
num_days = num_days + 1
if (daily_rain > max_rain):
max_rain = daily_rain
if (daily_rain < min_rain):
min_rain = daily_rain
line = fin.readline() # read next line from file
if line != "":
daily_rain = float(line) # end of while loop

fin.close()

if num_days > 0: # if there was data in the file
average_rain = total_rain / num_days
print("\nAverage daily rain: ", average_rain)
print("\nMinimum daily rain: ", min_rain)
print("\nMaximum daily rain: ", max_rain)
print("\nNumber of days: ", num_days, "\n\n")
else:
print("No data in:

, fhame, "\n")

Running read_rain.py

Enter filename containing rainfall data: rain.txt

Average daily rain: 9.0

Minimum daily rain: 5.0

Maximum daily rain: 12.0

Number of days: 3

