
Arrays Lists Lists and strings: mutable and immutable List Comprehension Program to count digits

Outline

Arrays

Lists

Lists and strings: mutable and immutable

List Comprehension

Program to count digits

Arrays Lists Lists and strings: mutable and immutable List Comprehension Program to count digits

Arrays

• We often have the need to carry out the same operations
on a number of items

• Most programming languages provide a way of describing
a collection of variables with identical properties

• This collection is called the array

• There is usually a single name for all of the members of
the collection

• Individual members are selected using an index

• In C, int x[10]; declares an array of ten locations, each
of type int

• We can access an individual element of the array, for
example x[6]

Arrays Lists Lists and strngs: mutable and immutable List Comprehension Program to count digits

Scalar types and structured types in Python

• We have seen a number of scalar types in Python
• The numeric types int and float are scalar types

• It is not possible to access their internal structure

• We have also seen a structured type or non-scalar type:
the str type

• We can use indexing to extract individual characters and
slicing to extract substrings

• Python does not have arrays!
• Python does have a number of other structured types that

provide for collections of elements

Lists

• A list in Python is an ordered sequence of elements

• The elements of a list can be of any type and need not
be of the same type as each other

• Lists can be concatenated, indexed and sliced
• The for statement can be used to iterate over the

elements of a list

• Literals of type list are written by enclosing a
comma-separated list of elements within square brackets

• An empty list is written as []
• The singleton list containing the value 1 is written as [1]

Using lists
The program below:
Program to demonstrate the use of lists

l1 = [1, 2, 3]
l2 = [4, ’five’, 6.50, 7]
l3 = []
l4 = [100]
l5 = [’another single element’]

print(’Printing the lists:’
print(’l1 is:’, l1)
print(’l2 is:’, l2)
print(’l3 is:’, l3)
print(’l4 is:’, l4)
print(’l5 is:’, l5)

produces the following output:
Printing the lists:
l1 is:
l2 is:
l3 is:
l4 is:
l5 is:

[1, 2, 3]
[4, ’five’, 6.5, 7]
[]
[100]
[’another single element’]

Operations on lists
The program below:
Program to demonstrate operations on lists

l1 = [1, ’two’, 3.0]
l2 = [l1, 98.765]

print(’l1 is:’, l1)
print(’l2 is:’, l2)
l3 = l1 + l2
print(’l3 (= l1 + l2) is:’, l3)
print(’l3[2] is:’, l3[2])
print(’l3[3] is:’, l3[3])
print(’l3[2:5] is:’, l3[2:5])

print(’Finished!’)

produces the following output:
l1 is: [1, ’two’, 3.0]
l2 is: [[1, ’two’, 3.0], 98.765]
l3 (= l1 + l2) is: [1, ’two’, 3.0, [1, ’two’, 3.0], 98.765]
l3[2] is: 3.0
l3[3] is: [1, ’two’, 3.0]
l3[2:5] is: [3.0, [1, ’two’, 3.0], 98.765]
Finished!

Arrays Lists Lists and strings: mutable and immutable List Comprehension Program to count digits

Python program to count numbers (1)
Program to count numbers 0 - 3 using variables

Initialise all counters to 0
count_0 = 0
count_1 = 0
count_2 = 0
count_3 = 0

Prompt the user for a number
number = int(input(’Enter a number (an int >= 0 and <= 3): ’))
while 0 <= number <= 3:

if number == 0:
count_0 += 1

elif number == 1:
count_1 += 1

elif number == 2:
count_2 += 1

elif number == 3:
count_3 += 1

Prompt the user for another number
number = int(input(’Enter a number (an int >= 0): ’))

Arrays Lists Lists and strings: mutable and immutable List Comprehension Program to count digits

Python program to count numbers (2)

Print the results
print(’Number of 0:’, count_0)
print(’Number of 1:’, count_1)
print(’Number of 2:’, count_2)
print(’Number of 3:’, count_3)

print(’Finished!’)

Arrays Lists Lists and strings: mutable and immutable List Comprehension Program to count digits

Python program to count numbers (3)

Enter a number (an int >= 0 and <= 3): 1
Enter a number (an int >= 0 and <= 3): 2
Enter a number (an int >= 0 and <= 3): 3
Enter a number (an int >= 0 and <= 3): 1
Enter a number (an int >= 0 and <= 3): 2
Enter a number (an int >= 0 and <= 3): 3
Enter a number (an int >= 0 and <= 3): 0
Enter a number (an int >= 0 and <= 3): 1
Enter a number (an int >= 0 and <= 3): 2
Enter a number (an int >= 0 and <= 3): 3
Enter a number (an int >= 0 and <= 3): 4
Number of 0: 1
Number of 1: 3
Number of 2: 3
Number of 3: 3
Finished!

Arrays Lists Lists and strings: mutable and immutable List Comprehension Program to count digits

Python program to count numbers (2)
Program to count numbers 0 - 3 using a list

Initialise all list elements to 0
count = [0, 0, 0, 0]

Prompt the user for a number
number = int(input(’Enter a number (an int >= 0 and <= 3): ’))
while 0 <= number <= 3:

if number == 0:
count[0] += 1

elif number == 1:
count[1] += 1

elif number == 2:
count[2] += 1

elif number == 3:
count[3] += 1

Prompt the user for another number
number = int(input(’Enter a number (an int >= 0): ’))

Arrays Lists Lists and strings: mutable and immutable List Comprehension Program to count digits

Python program to count numbers (2)

Print the results
print(’Number of 0:’, count[0])
print(’Number of 1:’, count[1])
print(’Number of 2:’, count[2])
print(’Number of 3:’, count[3])

print(’Finished!’)

Arrays Lists Lists and strings: mutable and immutable List Comprehension Program to count digits

Python program to count numbers (3)
Program to count numbers 0 - 3 using a list

Initialise all list elements to 0
count = [0, 0, 0, 0]

Prompt the user for a number
number = int(input(’Enter a number (an int >= 0 and <= 3): ’))
while 0 <= number <= 3:

count[number] += 1
Prompt the user for another number

number = int(input(’Enter a number (an int >= 0): ’))

for i in range(4):
print(’Number of ’, i, ’: ’, count[i])

Arrays List Comprehension Program to count digits

Using the for statement on a list
The program below:

Program to demonstrate the use of the for statement on a list

List = [1, ’two’, 3.0]

print(’List is:’, List)
print(’The elements of List are:’)

for x in List:
print(x)

print(’Finished!’)

produces the following output:

List is: [1, ’two’, 3.0]
The elements of List are:
1
two
3.0
Finished!

Arrays

The program below:

Program to demonstrate the use of an index into a list

List = [1, ’two’, 3.0]

print(’The elements of List are:’)

for i in range(len(List)):
print(List[i])

print(’Finished!’)

produces the following output:

List is: [1, ’two’, 3.0]

The elements of List are:

1
two
3.0
Finished!

Arrays Lists Lists and strings: mutable and immutable List Comprehension Program to count digits

Lists and strings: mutable and immutable

• Lists differ from strings in one very important respect

• Lists are mutable

• Strings are immutable
• There are many operators that can be used to create

objects of these immutable types, and variables can be
bound to objects of these types

• However, objects of immutable types cannot be modified

• Objects of mutable types can be modified

Arrays Lists Program to count digitsLists and strings: mutable and immutable List Comprehension

Lists are mutable

You can change any element of a list

The program below:

Program to demonstrate the mutability of a list

L = [1, 2, 3, 4, 5]
print(’L is:’, L)

L[2] = 300 # changing element 3
print(’Now L is:’, L). # L[0] is element 1

print(’Finished!’)

produces the following output:

L is: [1, 2, 3, 4, 5]
Now L is: [1, 2, 300, 4, 5]
Finished!

Arrays Lists Program to count digitsLists and strings: mutable and immutable List Comprehension

Strings are immutable

The program below:

Program to demonstrate the mutability of a list

s = ’ABBA’

print(’s is:’, s)

Cannot write:

s[1] = ’a’

The following error arises:

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: 'str' object does not support item
assignment

Cannot change the elements of a string

Arrays Lists Program to count digitsLists and strings: mutable and immutable List Comprehension

List Comprehension (1)
• List comprehension provides a concise way to apply an operation

to the values in a sequence

• It creates a new list in which each element is the result of applying a
given operation to a value from a sequence, eg the elements in
another list

• For example, the program below:

Program to demonstrate list comprehension

L = [x ** 2 for x in range(7)] # list comprehension
print(’L is:’, L)

print(’Finished!’)

produces the following output:

L is: [0, 1, 4, 9, 16, 25, 36]
Finished!

Arrays Lists Program to count digitsLists and strings: mutable and immutable List Comprehension

List Comprehension (1)

General form of list comprehension:

[expression for item in list]

L = [x for x in range(10)] # list comprehension
print(’L is:’, L)

produces the following output:

L is: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

Arrays Lists Program to count digits

• The for clause in a list comprehension can be followed by
one or more if and for statements that are applied to the
values produced by the for clause

• The additional clauses modify the sequence of values
generated by the first for clause and produce a new
sequence of values

• For example, the program below:
Program to demonstrate a more complicated list comprehension

mixedList = [1, 2, 3.0, ’four’, 5]
squaredList = [x ** 2 for x in mixedList if type(x) == int

or type(x) == float]

print(’mixedList is’, mixedList)
print(’squaredList is:’, squaredList)

produces the following output:
mixedList is [1, 2, 3.0, ’four’, 5]
squaredList is: [1, 4, 9.0, 25]
Finished!

Arrays Program to count digitsLists Lists and strings: mutable and immutable List Comprehension

Program to count digits (1)

Initialise the counter list
Prompt the user for a digit
Read digit
while digit ≥ 0 and digit ≤ 9 do

if digit == 0 then
increment the 0-counter

else if digit == 1 then
increment the 1-counter

else if digit == 2 then
increment the 2-counter

. . .
Prompt the user for another digit
Read digit

Print out each of the counters
Program finishes

Program to count digitsLists Lists and strings: mutable and immutable List Comprehension

Program to count digits (3)

Program to use a list to count the number of different digits entered
Uses the number as an index into the list

#Initialise the counter list
countList = [0 for x in range(10)]

Prompt the user for a digit
number = int(input(’Enter a digit between 0 and 9: ’))

while number >= 0 and number <= 9:
countList[number] += 1

Prompt the user for another digit
number = int(input(’Enter a digit between 0 and 9: ’))

for i in range(10):
print(’Number of ’, i, ’: ’, countList[i])

print(’Finished!’)

Outline

Operations on Strings and Lists

]
countList = [0 for x in range(4)]

countList is now [0, 0, 0, 0]

While the above example is correct, there is a simpler
solution to initialising a simple list:

countList = [0] * 4

countList is now [0, 0, 0, 0]

Operations on Strings and Lists
• We have now seen two different sequence types: str,

and list

• str, and list have the following operations in
common:

• seq[i] returns the ith element in the sequence

• len(seq) returns the length of the sequence

• seq1 + seq2 returns the concatenation of the two
sequences

Operations on Strings and Lists

• n * seq2 returns a sequence that repeats seq2 n times

e.g
str = “abcd’

2 * str is “abcdabcd”

• seq[start:end] returns a slice of the sequence

from position start to end but NOT including seq[end]

e.g
str = “abcd”

str[0:2] is “ab”
L = [1, 2, 33, 4, 8,6]
L[2:5] is [33, 4, 8]

• e in seq is True if e is contained in the sequence and
False otherwise

• e not in seq is True if e is not in the sequence and
False otherwise

• for x in seq iterates over the sequence

Methods

• In Object-Oriented Programming (OOP), a method can be
thought of as a function associated with a given class

• A method invocation can be thought of as the
call/invocation of such a function to an object of that class

• We use dot notation to place the object to which the
method is to be applied before the function name

• o.m(args) the method (function) m is called to operate
on o

Methods associated with lists

• The following are some of the methods associated with lists

• All of them, except count and index, mutate the list

• L.append(e) adds the object e to the end of the list L

L.count(e) returns the number of times that e occurs in L

• L.insert(i, e) inserts the object e occurs into L at index i

Methods associated with lists

List = [1, 2, 3, 1, 16]

List.append(44) adds the object 44 to the end of List

Now List is [1, 2, 3, 16, 1, 44]

n = List.count(1) returns the number of times 1 occurs in List

n is now 2 because 1 occurs twice in List

Methods associated with lists

List = [1, 2, 3, 1, 16]

List.insert(2, 99) inserts the object 99 into List at index 2

Now List is [1, 2, 99, 3, 16, 1, 44]

Methods associated with lists

L.extend(L1) adds the items in list L1 to the end of L

L = [1, 2, 3]
L1 = [‘a’, ‘b’, ‘c’]

L.extend(L1)

Now L is [1, 2, 3, ‘a’, ‘b’, ‘c’]

L.remove(e) deletes the first occurrence of e from L
(This method raises an exception if e is not in L)

L.remove(3)

Now L is [1, 2, ‘a’, ‘b’, ‘c’]

Methods associated with lists

L.index(e) returns the index of the first occurrence of e in L

(This methods raises an exception if e is not in L)

L = [1, 2, 3]

i = L.index(3)

i is now 2 because 3 occurs at position 2

Methods associated with lists

L.pop(i) removes and returns the item at index i in L

If i is omitted, it defaults to -1, to remove and return the last element
of L

L = [1, 2, 3, 4, 6]
x = L.pop()

Now L is [1, 2, 3, 4]
x is 6

y = L.pop(0)
Now L is [2, 3, 4]
y is 1

Methods associated with lists

L.reverse() reverses the order of elements in L

L = [1, 2, 3]

L.reverse()

Now L is [3, 2, 1]

Methods associated with lists

L.sort() sorts the elements in in L in ascending order

L = [1, 222, 3, 45, 6]

L.sort()

Now L is [1, 3, 6, 45, 222]

Program to demonstrate methods on lists
a = [0, 1234, 2345, 77.96, 0, 2]
print(’a is’, a)

print(’Number of occurences of 77.96, 100 and 0: ’,
a.count(77.96), a.count(100), a.count(0))

a.insert(2, 100)
a.append(0)
print(’a is’, a)

print(’First occurence of 100 is at index’, a.index(100))

a.remove(0)
print(’a is’, a)
a.reverse()
print(’a reversed is’, a)

a.sort()
print(’a sorted is’, a)

a.pop()
print(’a, having popped the last element, is’, a)
print(’Finished!’)

a is [0, 1234, 2345, 77.96, 0, 2]
Number of occurences of 77.96, 100 and 0: 1 0 2
a is [0, 1234, 100, 2345, 77.96, 0, 2, 0]
First occurence of 100 is at index 2
a is [1234, 100, 2345, 77.96, 0, 2, 0]
a reversed is [0, 2, 0, 77.96, 2345, 100, 1234]
a sorted is [0, 0, 2, 77.96, 100, 1234, 2345]
a, having popped the last element, is [0, 0, 2, 77.96, 100, 1234]
Finished!

Methods on strings (1)

• The following are some methods for strings
• Note that, since strings are immutable, all of them return

values and have no side-effects

• s.count(s1) returns the number of times that the string
s1 occurs in s

• s.find(s1) returns the index of the first occurrence of
the substring s1 in s, and returns -1 if s1 does not occur in
s

• s.rfind(s1) the same as find, but starts from the end
of s (the “r” in rfind stands for “reverse”)

Methods on strings (3)
s = “ABBA”
t = s.lower() converts all uppercase letters in s to
lowercase and stores them in t the string s is unchanged

t now contains abba
s = s.lower() converts all uppercase letters in s to
lowercase

s now has value: abba

t = s.upper() converts all lowercase letters in s to uppercase and
stores them in t

t now contains ABBA

Methods on strings (4)

s = “ABBA abba”

s.replace(old, new) returns list with all occurrences of the string
old in s replaced by the string new stores them in t

Examples

t = s.replace(‘bb’, ‘xxxx’)

t now contains ABBA axxxxa

s = s.replace(‘A’, ‘a’)

s now contains aBBa abba

Methods on strings (5)

• s.rstrip() removes trailing whitespace from s

• Whitespace refers to the space character, tab
character, newline, return character and formfeed
i.e. characters that you cannot see on the screen

• Sometimes when you read a string the newline
character will be part of the string at the end and
you want to remove it.

Methods on strings (6)

• s.split(d) splits string s using d as a delimiter
and returns the list of substrings making up s

If d is omitted, the substrings are separated by arbitrary
strings of whitespace characters (space, tab, newline, return
and formfeed)

This is a really useful and commonly used method

Methods on strings (6)

s = ’Joe, John, Bill, Mary’
L = s.split(‘,’)

We split the string using the comma character as delimiter

Now L is [‘Joe’, ‘John’, ‘Bill’, ‘Mary’]

s = ’Joe John Bill Mary’
L = s.split()

We split the string using the space character as delimiter

Now L is [‘Joe’, ‘John’, ‘Bill’, ‘Mary’]

Methods on strings (6)

Say we have a string made up of a Name, rate of pay and
hours worked. We can break the string into its components

s = ’Joe 10.5 40’
L = s.split()

We can access the components in L
Name = L[0]
Rate_per_hour = float(L[1])
Hours_worked = float(L[2])

Name is now ‘Joe’
Rate_per_hour is now 10.5
Hours_worked is now 40

Demonstrating methods on strings (1)

Program to demonstrate methods on strings

a = ’Cristiano Ronaldo plays soccer with Portugal!’
print(’a is:’, a)
print(’The length of a is:’, len(a))

print(’Number of occurences of o:’, a.count(’o’))

print(’First occurrence of o:’, a.find(’o’))
print(’First occurrence of o, searching backwards:’, a.rfind(’o’))

print(’String with all uppercase letters changed to lowercase:’,
a.lower())

print(’a is:’, a)

a = a.replace(’Portugal’, ’Manchester United’)
print(’a is:’, a)

print(’The words in a:’, a.split(’ ’))

print(’Finished!’)

Demonstrating methods on strings (2)

a is: Cristiano Ronaldo plays soccer with Portugal!
The length of a is: 45
Number of occurences of o: 5
First occurrence of o: 8
First occurrence of o, searching backwards: 37
String with all uppercase letters changed to lowercase:

cristiano ronaldo plays soccer with portugal!
a is: Cristiano Ronaldo plays soccer with Portugal!
a is: Cristiano Ronaldo plays soccer with Manchester United!
The words in a: [’Cristiano’, ’Ronaldo’, ’plays’, ’soccer’,

’with’, ’Manchester’, ’United!’]
Finished!

Demonstrating methods on strings (3)

guess3.py: Guess the secret word
Ignores case of words e.g. BLUE matches bluE

secret = "Blue"
guess = " "
num_chances = 1
secret = secret.lower() # convert to lowercase
while (guess != secret) and (num_chances <= 3) :

guess = input("Guess the secret word: ")
guess = guess.lower() # convert to lowercase
if guess != secret:

print("\nWrong guess: ", guess)
num_chances = num_chances + 1

else:
print("Well done !")

if num_chances > 3:
print("Sorry you have used all of your guesses")
print("The secret word was: ", secret)

Running guess3.py:

Guess the secret word: man

Wrong guess: man

Guess the secret word: dog

Wrong guess: dog

Guess the secret word: cat

Wrong guess: cat

Sorry you have used all of your guesses
The secret word was: blue

Running guess3.py:

Guess the secret word: black

Wrong guess: black

Guess the secret word: BLUE
Well done !

