
Loops (Iteration, Repetition)
Loops: Repeating parts of a program
So far, all our programs have carried out one major task such as converting a single
quantity of metres to centimetres.

Frequently, we want to repeat such a calculation. Say we have thirty values for
metres which we want to convert to centimetres. Using the program described
earlier, we would have to run it 30 times to achieve the desired result.

Programming languages provide loops to allow us repeat part of the program as
many times as we wish.

For example, in the conversion program we can write the program to repeat the
process of reading a value to be converted and displaying the result, 30 times or
any number of times.

This is called looping (or iteration).

The while loop
• There are a number of looping techniques, but basically all program looping can
be performed using one looping construct called a while loop.
• Loops are another form of conditional statement.
• In the case of a loop, we use the condition to decide whether to repeat a
statement or not.
• We repeat the statement based on the evaluation of the condition in the same
way as for the if statement.

• The action part of a loop is referred to as the loop body.
• This may be a simple or block of statements (group of statements).

• The loop body is executed only if the condition evaluates to true, the condition
is then re-evaluated to test if it is still true. If it is true, we repeat execution of the
loop body and test the condition again. This process continues until the
condition evaluates to false.

• In certain situations, the condition will never evaluate to false and the loop will
continue to execute endlessly.

• Such a loop (usually the result of a programming error) is called an endless or
infinite loop.

• An endless loop may be terminated by interrupting the program or switching off
the computer, both of which terminate the program as.

• To interrupt a program, a combination of keys is pressed, such as pressing the
control key and the C key simultaneously (denoted by Ctrl/C). The operating
system will then the interrupt and terminates the program.

Write a program to implement a guessing game. The program “knows” a secret number and
prompts the user to guess the number. It allows the user to keep guessing until they find the
number.
guess.py: Guess the secret number

secret = 4 # Secret number the user has to guess
guess = -1

while guess != secret:
guess = int(input("Guess the number between 1 and 10: "))
if guess != secret:

print("\nWrong guess: ", guess)
else:

print("Well done !")
Running this program:
Guess the number between 1 and 10: 3
Wrong guess: 3
Guess the number between 1 and 10: 5
Wrong guess: 5
Guess the number between 1 and 10: 4
Well done !

• Modify the guessing game to allow the user only 3 chances to guess

guess.py: Guess the secret number

secret = 4
guess = -1
num_chances = 1

while (guess != secret) and (num_chances <= 3):
guess = int(input("Guess the number between 1 and 10: "))
if guess != secret:

print("\nWrong guess: ", guess)
num_chances = num_chances + 1

else:
print(“Well done !”)

if num_chances > 3:
print("Sorry you have used all of your guesses")

Running this program:
Guess the number between 1 and 10: 0
Wrong guess: 0
Guess the number between 1 and 10: 1
Wrong guess: 1
Guess the number between 1 and 10: 2
Wrong guess: 2
Sorry you have used all of your guesses

The statement

while (guess != secret) and (num_chances <= 3):

The while above tests both conditions and only repeats if both conditions are true

pay3.py: Calculate and display hourly pay for 5 workers

count = 1
hours_worked = float(input("\nEnter number of hours worked: "))

while count <= 5:
if hours_worked > 100:

print("\nHour worked too large:", hours_worked)
else:

rate_per_hour = float(input("\nEnter rate per hour: "))
if rate_per_hour > 50:

print("\nRate per hour too high ", rate_per_hour)
else:

pay = rate_per_hour * hours_worked
print("\nPay = ", pay, "for ", hours_worked, "hours")

hours_worked = float(input("\nEnter number of hours worked: "))
count = count + 1

calc4.py: Calculator program to add 2 numbers, 3 times
Author: Joe Carthy
Date: 01/10/2022

count = 1

while count <= 3:
number1 = float(input("\nEnter first number: "))
number2 = float(input("\nEnter second number: "))
sum = number1 + number2
print("\nThe sum of", number1, "and", number2, "is",

sum, "\n\n")
count = count + 1

print (“Finished summing\n”)

calc4.py outputs:

Enter first number: 4
Enter second number: 6
The sum of 4 and 6 is 10

Enter first number: 20
Enter second number: 30
The sum of 20 and 30 is 50

Enter first number: 65
Enter second number: 50
The sum of 50 and 65 is 115

Finished summing

Write a program to sum the integers 1 to 99 (i.e. calculate the sum of 1+2+3+...+99) and display the result.

sum.py: calculate 1+2+3+.....+99
Author: Joe Carthy
Date: 01/10/2022

sum = 0 # contains the sum we wish to compute
i = 1 # the loop counter

while i <= 99:
sum = sum + i
i = i + 1

print(“Summation is: “, sum)

Executing this program produces as output:

Summation is: 4950

calc6.py: Calculator program to add 2 numbers until 0 entered
Author: Joe Carthy
Date: 01/10/2022

number1 = -1 # Any non-zero value will do

while number1 != 0:
number1 = float(input("\nEnter first number: "))
if number1 != 0:

number2 = float(input("\nEnter second number: "))
sum = number1 + number2
print("\n\nThe sum of", number1,"and",number2,"is",sum, "\n\n")

print("\n\nCalculator program terminated \n")

Running this program:

Enter first number: 3

Enter second number: 3

The sum of 3.0 and 3.0 is 6.0

Enter first number: 0

Calculator program terminated

Write a program to display 4 lines with 1 star (‘*’) character on line 1; 2 stars on line 2, 3 stars on line 3 and 4 stars on
line 4. The output should appear as follows:
*
**

tri.py: displays triangle composed of *'s
num_lines = 1

while num_lines <= 4:
num_stars = 1
while num_stars <= num_lines: # inner loop

print("*”, end = "")
num_stars = num_stars + 1 #end inner loop

print("\n") # start new line
num_lines = num_lines + 1 # end outer loop

Write a program to allow you enter as many numbers as you wish. The program should sum the numbers and
calculate the average. You may use 0 as the value used to indicate that you are finished entering numbers. Such
a value is called a sentinel.

sum5.py: Sum numbers until 0 entered and display sum and average

sum = 0 # contains the sum we wish to compute
n = 0 # number of numbers user entered

num = float(input("Enter a number or 0 to quit: "))
while (num != 0):

sum = sum + num
num = float(input("Enter a number or 0 to quit: "))
n = n + 1 # count numbers entered

if n != 0:
average = sum / n
print("\n\nSum is: ", sum, "Average is:", average)

Iteration statement The while statement Infinite loops Augmented assignment Another while loop example Definite and indefinite iteration

Outline

Iteration statement

The while statement

Infinite loops

Augmented assignment

Another while loop example

Definite and indefinite iteration

Iteration statement The while statement Infinite loops Augmented assignment Another while loop example Definite and indefinite iteration

Iteration statement (1)

• Thus far, all of our programs have carried out one action or

one major task

• Calculating the area of various geometrical shapes

• Calculating the total price including taxes

• Checking if a year is a leap year

• Checking if a password is correct

• . . .

Iteration statement The while statement Infinite loops Augmented assignment Another while loop example Definite and indefinite iteration

Iteration statement (2)

• We often want to carry out an action or a calculation a

number of times

• For example, say we want to check 20 different years to

see if they are leap years

• We would have to run our program 20 times!

• We would prefer to be able to run a program once and

allow it to repeat the operation(s) the required number of

times

Iteration statement The while statement Infinite loops Augmented assignment Another while loop example Definite and indefinite iteration

Iteration statement (3)

• In our programs thus far, we have considered two types of

statement:

1. Sequence (or Sequential statement)

2. Conditional statement (or Selection statement)

• With sequential statements, the first statement is executed,

then the second, and so on in sequence

• With conditional statements, one of a number of

statements, or none, is executed depending on the value of

a controlling expression (condition)

Iteration statement The while statement Infinite loops Augmented assignment Another while loop example Definite and indefinite iteration

Iteration statement (4)

• The third type of statement is the iterative statement (or

repetition statement or loop statement)

• An iterative statement repeatedly executes a statement or

a block of statements (called the loop body) while a

condition is true or until a condition is met

• The condition is evaluated. If it evaluates to True, the

statement in the loop body is executed

• The condition is evaluated again. If it evaluates to True,

the statement in the loop body is executed again

• This process continues until the condition evaluates to

False

• When the condition evaluates to False, the statement

following the iterative statement is executed

Iteration statement The while statement Infinite loops Augmented assignment Another while loop example Definite and indefinite iteration

Iteration statement (5)

• In certain situations, the condition will never evaluate to

False

• In this case, the iteration statement will continue to execute

endlessly

• Such a loop is called an infinite loop or endless loop

• This is often the result of a design or programming error!

• A program with an infinite loop may be terminated by

interrupting the program or by turning off the computer

• Often a control sequence (for example CONTROL-C) can

be used to interrupt a program

• An IDE will often provide a command to interrupt a program

• The interpreter or the operating system detects the

interrupt and terminates the program

Iteration statement The while statement Infinite loops Augmented assignment Another while loop example Definite and indefinite iteration

The while statement

• In Python, the while statement has the following form:

• while Boolean expression:

statement(s)
• Recall that when describing the form of a statement, italics

are used to describe the type of Python code that can

occur at that point in the statement

• Boolean expression indicates that any expression that

evaluates to True or False can follow the reserved word

while

• statement(s) indicates that any sequence of Python

statements can appear at that point

Iteration statement The while statement Infinite loops Augmented assignment Another while loop example Definite and indefinite iteration

Summing numbers (1)

• Consider the following program:

number1 = 1

number2 = 2

number3 = 3

t o t a l = number1 + number2 + number3

pr in t (' To ta l i s : ' , t o t a l)

• This produces the following output:

>>>

To ta l is : 6

Iteration statement The while statement Infinite loops Augmented assignment Another while loop example Definite and indefinite iteration

Summing numbers (2)

• Consider the following variation:

number1 = 1

number2 = 2

number3 = 3

Running t o t a l
t o t a l = 0

t o t a l = t o t a l + number1

t o t a l = t o t a l + number2

t o t a l = t o t a l + number3

pr in t (' To ta l i s : ' , t o t a l)

• This produces the following output:

>>>

To ta l is : 6

Iteration statement The while statement Infinite loops Augmented assignment Another while loop example Definite and indefinite iteration

Summing numbers (3)

• Now consider the following program that uses a while
statement:

Running t o t a l
t o t a l = 0

Counter f o r loop
count = 1

while count <= 3:

t o t a l = t o t a l + count

count = count + 1

pr in t (' To ta l i s : ' , t o t a l)

• This produces the following output:

>>>

To ta l is : 6

Iteration statement The while statement Infinite loops Augmented assignment Another while loop example Definite and indefinite iteration

Summing numbers (4)

• The loop body is executed only if the condition (count <=
3) evaluates to True

• Since we have initialised count to 1 the condition evaluates

to True and the statements in the loop body are executed

• The first value assigned to a variable is called the initial

value

• In the loop body, a revised running total is calculated by

adding the value of count to total
• The variable total is assigned the value total +
count, ie total is assigned the value 1 (0 + 1)

• The variable count is then increased by 1, to 2

• We then test the condition again

Iteration statement The while statement Infinite loops Augmented assignment Another while loop example Definite and indefinite iteration

Summing numbers (5)

• The variable count is now 2 and the condition (count
<= 3) remains True so we execute the loop body again

• The variable total is assigned the value total +
count, ie total is assigned the value 3 (1 + 2)

• The variable count is then increased by 1, to 3

• The condition (count <= 3) remains True so we

execute the loop body again

• The variable total is assigned the value total +
count, ie total is assigned the value 6 (3 + 3)

• The variable count is then increased by 1, to 4

• The condition (count <= 3) is now False so we do not

execute the loop body again

• Instead, execution continues with the first statement after

the iterative statement

Iteration statement The while statement Infinite loops Augmented assignment Another while loop example Definite and indefinite iteration

Summing numbers (6)

• Consider the following variation that lets us see what is

going on:

Running t o t a l
t o t a l = 0

pr in t (' I n i t i a l value o f t o t a l i s : ' , t o t a l)

Counter f o r loop
count = 1

while count <= 3:

t o t a l = t o t a l + count

pr in t (' Current t o t a l i s ' , t o t a l)

count = count + 1

pr in t (' To ta l i s : ' , t o t a l)

Iteration statement The while statement Infinite loops Augmented assignment Another while loop example Definite and indefinite iteration

Summing numbers (7)

• This produces the following output:

>>>

I n i t i a l value o f t o t a l is : 0

Current t o t a l is 1

Current t o t a l is 3

Current t o t a l is 6

To ta l is : 6

>>>

Iteration statement The while statement Infinite loops Augmented assignment Another while loop example Definite and indefinite iteration

Summing numbers (8)

• Each time we execute the loop body (“go around the

loop”), we add count to total and add 1 to count

• The variable count is used in this example to control how

many times we execute the loop

• After executing the loop three times, count will have the

value 4

• Each time the interpreter executes the statements in the

loop, the condition is tested. The statements in the body of

the loop are executed only if the condition evaluates to

True

• When count has the value 4, we “leave the loop” (“the

loop terminates”)

• Execution continues with the next statement after the

while statement (if any)

Iteration statement The while statement Infinite loops Augmented assignment Another while loop example Definite and indefinite iteration

Summing numbers (9)

• Note that the condition is evaluated before the loop body is

executed

• If the condition initially evaluates to False, the loop body

will not be executed at all

• It is essential that the variables total and count are

initialised to appropriate values for the loop to operate

correctly

• As a general programming principle, all variables should

be given correct values, usually at the beginning of a

program or beginning of a block

• If you do not initialise a variable, you cannot be sure what

value it may contain (sometimes it may contain 0 for

numbers) and your program may not run correctly.

• This is a common source of errors for beginners

• Python does not allow you to use uninitialised variables!

Iteration statement The while statement Infinite loops Augmented assignment Another while loop example Definite and indefinite iteration

Infinite loops (1)

• What would happen if the statement

count = count + 1

were omitted from the loop body ?

• The loop would never terminate, as count would always

be less than 3

• We would have an infinite loop

• This is a very common error to make when using loops

• Such an error may be a logical error, a design error or a

programming error and produces a runtime error

• These differ from syntax errors because the program will

execute, but does not produce the expected results

Iteration statement The while statement Infinite loops Augmented assignment Another while loop example Definite and indefinite iteration

Infinite loops (2)

• Consider the following variation:

Running t o t a l
t o t a l = 0

pr in t (' I n i t i a l value o f t o t a l i s : ' , t o t a l)

Counter f o r loop
count = 1

while count <= 3:

t o t a l = t o t a l + count

pr in t (' Current t o t a l i s ' , t o t a l)

pr in t (' To ta l i s : ' , t o t a l)

Iteration statement The while statement Infinite loops Augmented assignment Another while loop example Definite and indefinite iteration

Infinite loops (3)

• This produces the following output:

>>>

I n i t i a l value o f t o t a l is : 0

Current t o t a l is 1

Current t o t a l is 2

Current t o t a l is 3

Current t o t a l is 4

Current t o t a l is 5

Current t o t a l is 6

Current t o t a l is 7

Current t o t a l is 8

Current t o t a l is 9

. . .

Iteration statement The while statement Infinite loops Augmented assignment Another while loop example Definite and indefinite iteration

Augmented assignment

• In Python, augmented assignment is the combination, in a

single statement, of a binary operation and an assignment

statement

• For example, executing the statement

x += 1

achieves a similar effect to that of executing

x = x + 1

• Some differences:

• x is evaluated only once

• When possible, the operation is performed “in-place”, ie

rather than creating a new object and assigning that to the

target, the old object is modified instead

Iteration statement The while statement Infinite loops Augmented assignment Another while loop example Definite and indefinite iteration

Using augmented assignment

• Re-writing the previous (working) program:

Running t o t a l
t o t a l = 0

pr in t (' I n i t i a l value o f t o t a l i s : ' , t o t a l)

Counter f o r loop
count = 1

while count <= 3:

t o t a l += count

pr in t (' Current t o t a l i s ' , t o t a l)

count += 1

pr in t (' To ta l i s : ' , t o t a l)

Iteration statement The while statement Infinite loops Augmented assignment Another while loop example Definite and indefinite iteration

Another while loop example

• Write a program that checks whether numbers up to a limit

are divisible by 2 or 3:

Def in ing how f a r we go
l i m i t = 20

Counter f o r loop
count = 1

while count <= l i m i t :

pr in t (' Number i s : ' , count)

i f count % 2 == 0:

pr in t (' Number i s d i v i s i b l e by 2 ')

i f count % 3 == 0:

pr in t (' Number i s d i v i s i b l e by 3 ')

pr in t ()

count += 1

pr in t (' F in ished ! ')

Iteration statement The while statement Infinite loops Augmented assignment Another while loop example Definite and indefinite iteration

Definite and indefinite iteration

• Often it is not known in advance how many times to repeat

a loop

• It is not possible to use while loops as presented in the

examples, where it was specified exactly how many times

to repeat the loop body

• We will now write a program that continues operating for as

long as the user requires

• This program converts kilometres into miles

• The user may wish to enter one number or 1000 numbers

• This type of loop is sometimes referred to as indefinite

iteration, as it is not known in advance how many times it

will be repeated

Iteration statement The while statement Infinite loops Augmented assignment Another while loop example Definite and indefinite iteration

Converting from km to miles
Write a program that converts from kilometres to miles

Conversion from km to miles
km_to_miles_conv = 0.621371192

Defining how far we go
limit = int(input(’Enter the number of numbers

you wish to convert: ’))

Counter for loop
count = 1

while count <= limit:
Prompt the user for a number of km, convert the number

and print out both
km = float(input(’Enter the number of kilometres: ’))
miles = km * km_to_miles_conv
print(km, ’kilometres is’, miles, ’miles’)
print()
count += 1

print(’Finished!’)

Iteration statement The while statement Infinite loops Augmented assignment Another while loop example Definite and indefinite iteration

Converting from km to miles

Write a program that converts from kilometres to miles

Conversion from km to miles
km_to_miles_conv = 0.621371192

Prompt the user for a number of km
km = float(input(’Enter a number of kilometres you wish

to convert (negative number to exit): ’))

while km >= 0:
Convert the number and print out both km and miles

miles = km * km_to_miles_conv
print(km, ’kilometres is’, miles, ’miles’)
print()

Prompt the user for another number of km
km = float(input(’Enter a number of kilometres you wish

to convert (negative number to exit): ’))

print(’Finished!’)

Iteration statement The while statement Infinite loops Augmented assignment Another while loop example Definite and indefinite iteration

More indefinite iteration

• Another technique is to execute the loop body as long as

the user doesn’t enter a particular value

• For example, a program might continue unti a negative

value is entered

• The next example illustrates a very common technique for

controlling the number of times a loop is repeated in

interactive programs

• Such programs use information from the user to control

how they operate

for Loop

The for loop is used when we know the number of times we wish to repeat the loop body. We frequently know
how often we wish to repat a statement(s). For example, we often use the for loop to process a list of items.
The for loop is often used in combination with the range() function.

The range() function

This function returns a sequence of numbers in a given range:
range(6) returns: 0,1,2,3,4,5 # integers from 0 up to but not including 6

range (1, 5) returns 1, 2, 3, 4 # from 1 up to but not including 5

for Loop

There are 3 forms of range :

range (stop) generate list from 0 to stop, not including stop
range (3) gives 0, 1, 2

range(start, stop) generate list from start to stop, not including stop

range (4,8) gives 4, 5, 6, 7

range(start, stop, step) generate list from start to stop, not including stop,
by increments of size step

range (0, 12, 2) # yields 0, 2, 4, 6, 8, 10

for Loop

The for loop is used when we know the number of times we wish to repeat the loop body. We frequently know
how often we wish to repat a statement(s). For example, we often use the for loop to process a list of items.

We can re-write the program to sum the integers 1 to 99 using a for loop as follows

sum3.py: Sum 1 + 2 + 3 + ... +99

sum = 0 # contains the sum we wish to compute
for i in range(1, 100):

sum = sum + i

print("\nSummation is:", sum, "\n")

Write a program to read 10 integers, sum them and calculate the average. The program should display the sum
and the average.
sum3.py: Sum 1 + 2 + 3 + ... 10+

sum = 0 # contains the sum we wish to compute
for i in range(1, 11): # sum 1 to 10:

sum = sum + i

average = sum / 10

print("\n\nSum is: ", sum, "Average is:", average)

Output:

Sum is: 55 Average is: 5.5

Modify the program tri.py to use for loops, to display 4 lines with 1 star (‘*’) character on line 1; 2 stars on line
2, 3 stars on line 3 and 4 stars on line 4.

#!/usr/bin/python3
tri3.py: displays triangle composed of *'s

num_lines = 1

for num_lines in range (1, 5): # outer loop
for num_stars in range (1, num_lines+1): # inner loop

print("*", end = "")
print("\n") # start new line

The inner loop displays num_lines stars on each line.

String Processing
In programming, we often wish to “process” the elements of a string in various ways. We will show how to
access and process strings in the following examples. We usually need to know how long a string is when we
are going to process it. The len() function gives us the length of a string e.g.

l = len(“abcd”)
print (“l = “, l)

l = 4

print(len(“123456”))

outputs

6

Write a program to output the characters in a short string on separate lines.

str.py: Output each characters on a newline

string = "abc"
length = len(string)

for i in range (0, length):
print(string[i])

outputs
a
b
c
In this example length is 3 and range (0, length) gives 0,1, 2.
The last element of a string is always at position length – 1 and strings always start at element 0.

Write a program to output the characters in a short string, separating them with the “&” character.

str2.py: Output each characters of string followed by &

string = "abcdef"
length = len(string)

for i in range (0, length):
print(string[i] + "&", end="")

print()

outputs

a&b&c&d&e&f&

Write a program to read a string and display it in reverse i.e. Joe is displayed as oeJ

str3.py: Read a string and display it in reverse

string = input("Enter a string: ")
length = len(string)

for i in range (length-1, -1, -1):
print(string[i], end="")

print()

outputs

Enter a string: ABCDEF
FEDCBA

Pay particular attention to the range function used here range (length-1, -1, -1):

Note the first element of a string in Python is element 0.
In this example we entered a 6 character string.

This means the elements are from 0 up to 5 (not 6).
Thus to display the string backwards we need to range from element 5 to element 0.

This is why we subtract 1 from length in the range function.

Also we need to include element 0 in the output, so we need to set the stop value in range to be -1
e.g. range (5, 0, -1) will give us elements 5,4,3,2, 1 but NOT element 0.

To include 0 we need range(5, -1, -1) which means start at 5, step down by 1 each time and stop at -1 but do
NOT include -1.

Conditional statement inside iteration statement Nested loops More nested loops For loops The for loop in Python Demonstra

Outline

For loops

The for loop in Python

Demonstrating the bevaviour of the for loop

Specifying a sequence as a literal

Iterating through a string

Conditional statement inside iteration statement Nested loops More nested loops For loops The for loop in Python Demonstra

For loops

• A for loop is traditionally used when you have a piece of
code which you want to repeat a certain number of times

• Virtually every programming language has a for loop

• However, the for loop exists in many different flavours, ie
both the syntax and the semantics differ from one
programming language to another

Conditional statement inside iteration statement Nested loops More nested loops For loops The for loop in Python Demonstra

The for loop in Python

• The general form of the for loop in Python is as follows:

for variable in sequence:
statement(s)

• Recall that when describing the form of a statement, italics
are used to describe the type of Python code that can
occur at that point in the statement

• The variable following the keyword for is bound to the first
value in the sequence and the statement block is executed

• The variable is then bound to the second value in the
sequence and the statement block is executed again

• This process continues until the sequence is exhausted or
a break statement in the statement block is executed

Conditional statement inside iteration statement Nested loops More nested loops For loops The for loop in Python Demonstra

The range function (1)

• The sequence of values bound to the variable in a for
loop is most often generated using the range function

• This returns a sequence containing an arithmetic
progression

• The range function takes three integer arguments:
start, stop and step

• It produces the progression start, start + step,
start + 2 * step, . . .

• If step is positive, the last element of the sequence is the
largest integer start + i * step that is less than stop

• If step is negative, the last element of the sequence is the
smallest integer start + i * step that is greater than
stop

Conditional statement inside iteration statement Nested loops More nested loops For loops The for loop in Python Demonstra

The range function (2)

• For example, range(5, 40, 10) produces the
sequence [5, 15, 25, 35]

• range(40, 5, -10) produces the sequence [40, 30,
20, 10]

• If the first argument is omitted, the default is 0

• If the last argument (step) is omitted, the default is 1

• So range(0, 3, 1), range(0, 3) and range(3) all
produce the sequence [0, 1, 2]

Conditional statement inside iteration statement Nested loops More nested loops For loops The for loop in Python Demonstra

Demonstrating the bevaviour of the for loop (1)

Consider the following program

Demonstrating the behaviour of the for loop

for i in range(0, 20):
print(’Counter is:’, i)

print(’Finished!’)

Conditional statement inside iteration statement Nested loops More nested loops For loops The for loop in Python Demonstra

Demonstrating the bevaviour of the for loop (2)
This produces the following output
>>>
Counter is: 0
Counter is: 1
Counter is: 2
Counter is: 3
Counter is: 4
Counter is: 5
Counter is: 6
Counter is: 7
Counter is: 8
Counter is: 9
Counter is: 10
Counter is: 11
Counter is: 12
Counter is: 13
Counter is: 14
Counter is: 15
Counter is: 16
Counter is: 17
Counter is: 18
Counter is: 19
Finished!

Conditional statement inside iteration statement Nested loops More nested loops For loops The for loop in Python Demonstra

Specifying a sequence as a literal

• It is possible to specify a sequence as a literal
• Elements of the sequence are given inside square

brackets ([and]) and separated by commas

• [10, 20, 30]

• [’COMP 10280’, ’COMP 20240’, ’COMP 20270’, ’COMP
30640’, ’COMP 30680’, ’COMP 47340’]

Conditional statement inside iteration statement Nested loops More nested loops For loops The for loop in Python Demonstra

Iterating through a sequence of strings (1)

Iterating through a list of strings
Strings are given in a literal

strings = [’aardvark’, ’buffalo’, ’cat’, ’dog’, ’elephant’, ’fox’,
’giraffe’, ’hyena’, ’iguana’, ’jackal’, ’kangaroo’,
’llama’, ’mouse’]

for word in strings:
print(’The length of’, word, ’is:’, len(word))

print(’Finished!’)

Conditional statement inside iteration statement Nested loops More nested loops For loops The for loop in Python Demonstra

Iterating through a sequence of strings (2)

This produces the following output

>>>
The length of aardvark is: 8
The length of buffalo is: 7
The length of cat is: 3
The length of dog is: 3
The length of elephant is: 8
The length of fox is: 3
The length of giraffe is: 7
The length of hyena is: 5
The length of iguana is: 6
The length of jackal is: 6
The length of kangaroo is: 8
The length of llama is: 5
The length of mouse is: 5
Finished!

