Python Programming
John Dunnion

School of Computer Science
University College Dublin

Outline

Numbers

Expressions
Arithmetic operators in Python

Division in Python
Powers

Variables and assignment
The variable _

Numbers in Python programs
Using numbers in Python programs
Importing the math module
Importing modules

Python versions

Expressions

The Python interpreter can act as a simple calculator

When you type an expression (eg 4 + 6), the interpreter
evaluates the expression and prints out the value (eg 10)
The operators +, -, * and / work just like in most
programming languages, eg C and Java

Parentheses ((and)) can be used to group
sub-expressions

Expressions in Python have a particular type

Whole numbers (integers) are represented in Python using
the type int

Numbers with a fractional part (real numbers) are
represented in Python using the type float

Arithmetic operators in Python

Python Operator Operation
+ Addition
- Subtraction
* Multiplication
/ [Floating-point] Division
// Integer Division
%

* %

Remainder after integer division
Power

>>>

>>>

200
>>>

14
>>>

20

Python Expressions (1)

2 +2
50 « 4
4 « 3+ 2

4 « (3 + 2)

Python Expressions (2)

« The integer numbers (eg 1, 2, 20, 20000000) have type int
« Numbers with a fractional part (eg 1.5, 2.444, 20.0) have
type float

« Expressions with mixed type operands convert the integer
operand to floating-point

Python Expressions (3)

>>> 1 + 1

2

>>> 4 + 4

8

>>> 20.5 + 42.1234
62.6234

>>> 1234.5 + 765.5
2000.0

>>> 50 « 5
250

>>> 50 « 5.0
250.0

>>> 2345 + 15
3517.5

Division in Python

« Division (/) in Python 3.x always returns a f1loat

Division in Python
[john@localhost ~]$ python3

>> 06 [/ 3

2.0

>> 7 [3
2.3333333333333335
>>> 6 / 3.0

2.0

Division and “Integer Division” (1)

« Division (/) in Python 3.x always returns a f1loat

- To do integer division (“floor division”) and always get an
int result, use the // operator

- To get the remainder after integer division, use the %
operator

Division and “Integer Division” (2)
[john@localhost ~]$ python3

>>> 23 [3
7.666666666666667

>>> 23 [/ 3

7

>>> 23 % 3

2

>>> 7 + 3 + 2 # result * divisor + remainder
23

Powers

« The “x*” operator can be used to calculate powers

>>> 3 xx 2 # 3 squared
9

>>> 2 «x 8 # 2 to the power of 8
256

>>>
>>>
>>>
>>>

240

Variables and assignment

A value can be assigned to a variable using the = operation

After an assignment in the interpreter, no result is
displayed before the next prompt

length = 20

breadth = 12

area = length « breadth
area

Variables must be defined

- If a variable is ‘not defined” (not assigned a value), trying to
use it will generate an error

>>> X

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

NameError: name 'x' is not defined

Using numbers in Python programs (1)

Calculating area of a rectangle
p10. py

length = 2.7
breadth = 5.5

print('Length _is:_"', length)
print('Breadth _is:_', breadth)

area = length =+ breadth
print('Area _of rectangle _is: ', length « breadth)

[

print('Area of rectangle _is:_ ', area)

[

Using numbers in Python programs (2)

Length is: 2.7

Breadth is: 5.5

Area of rectangle is: 14.850000000000001
Area of rectangle is: 14.850000000000001

Using numbers in Python programs (3)

Calculating area of a rectangle
Note use of "+" in print statements

p11.py

length = 2.7
breadth = 5.5

print('Length _is: ' + length)
print('Breadth is: ' + breadth)

area = length =+ breadth
print('Area _of _rectangle _is: '

length

print('Area of rectangle _is: ', area)

» breadth)

Using numbers in Python programs (5)
Calculating tax due on item
p12.py
tax_rate = 13.5 # 13.5% VAT rate
nett_price = 199.99 # Net price in Euro
print('Nett _Price is: ', nett_price)
print('Tax_rate is: ', tax_rate)

tax_due = nett_price = tax_rate / 100
print('Tax_due: ', tax_due)

total _price = nett_price + tax_due
print('Total _price: ', total_price)

print('Total_ price_is: ",
nett_price + nett_price » tax_rate / 100)

Using numbers in Python programs (6)

>>>
Nett Price is: 199.99
Tax rate is: 13.5

Tax due: 26.99865

Total price: 226.98865
Total price is: 226.98865
>>>

Using numbers in Python programs (7)

Calculating area of a square and a circle

Length of side of square = Diameter of circle

p13.py

length
radius

2.7 # Length of side of square
length / 2 # Radius of circle

pi = 3.1415927 # Defining pi

print(
print (

print(
print (

'Length _of _side _is: ', length)

"Area _of _square _is:_ "', length x«x 2)
'Radius of circle is: ', radius)
"Area of _circle is:_ ', pi * radius =+ 2)

Using numbers in Python programs (8)

>>>

Length of side is: 2.7

Area of square is: 7.290000000000001
Radius of circle is: 1.35

Area of circle is: 5.72555269575

>>>

Importing the math module (1)

Calculating area of a square and a circle
Length of side of square = Diameter of circle
Using math. pi

p14.py

import math

length 2.7 # Length of side of square
radius = length / 2 # Radius of circle
print('Length of side is: ', length)

print ('Area _of _square _is: ', length x« 2)
', radius)

, math.pi » radius =+ 2)
, math.pi)

print ('Radius of _circle _is:
print('Area _of _circle is: '
print('Value_of _math.pi: '

Importing the math module (2)

>>>

Length of side is: 2.7

Area of square is: 7.290000000000001
Radius of circle is: 1.35

Area of circle is: 5.725552611167399

Value of math.pi: 3.141592653589793
>>>

Importing the math module

The math module provides some constants and a number
of maths functions

Functions include square root, factorial, trigonometric
functions, ...

Constants include it (math.pi)and e (math.e)

As you write bigger programs, you will find yourself
importing several modules

Importing modules

« Documentation on the modules available is available at:
e https://docs.python.org/3/library
(currently Python 3.9.7 documentation [30 August 2021])

« For example, documentation on the math module is
available at:

 Python 3.x:
https://docs.python.org/3/library/math.html

https://docs.python.org/3/library/math.html

Outline

More on assignment
Multiple assignment

Output revisited

Input

Types in Python

Type conversions

Swapping two values (1)

Swapping two values
This doesn't work!
p21.py

First of all, give the variables values
2
3

print('Before _swapping: ")
print('x_is"', Xx)
print('y_is', vy)

print ()

Swapping two values (1)

Now swap them

w
y
X
print('After _swapping: ")

print('x_is"', Xx)
print('y_is', y)

Swapping two values (2)

+ Running this program produces the following output:

>>>

Before swapping:
X is 2

y is 3

After swapping:
x.is 3

y.is 3
>>>

« Uh oh! What happened here?

Swapping two values (3)

Swapping two values
This does work!

p22.py

First of all, give the variables values
2
3

print('Before _swapping: ")
print('x_is"', Xx)
print('y_is', vy)

print ()

More on assignment Qutput revisited Input Types in Python

Swapping two values (3)

Now swap them

temp =y
y =X
X = temp

print('After _swapping: ')
print('x_is"', Xx)
print('y_is ', y)

Swapping two values (4)

+ Running this program produces the following output:

>>>

Before swapping:
X is 2

y is 3

After swapping:
x is 3

y is 2

>>>

Multiple assignment

« Python allows multiple assignment
+ The statement

x, y =10, 20

assigns the value 10 to x and the value 20 to y

+ All the expressions on the right-hand side of the
assignment operator are evaluated before any of the
assignments are carried out

Swapping two values using multiple assignment (1)

Swapping two values using multiple assignment
p23.py

X,y =25, 36 # Give the variables values
print ('Before swapping: ")

print('x_is"', Xx)

print('y_is', vy)

print ()

X, ¥y =Y, X # Now swap them

print('After _swapping: ")
print('x_is"', Xx)
print('y_is', y)

Swapping two values using multiple assignment (2)

+ Running this program produces the following output:

>>>

Before swapping:
x is 25

y is 36

After swapping:
x is 36

y is 25

>>>

Output revisited

+ We have seen the use of the print function
« This produces output

« By default, this output goes to the “standard output”
(normally the screen)

Converting Euro to Dollars (1)

Converting Euro to US Dollars
p15.py

euro_dollar_conversion = 1.12234
Number of US Dollars per euro
According to xe.com, 29.9.2016

euro_amount = 125.53 # Number of Euro

print('Conversion rate from _FEuro to US _Dollars: "',
euro_dollar_conversion)
print ("Amount_ in_ Euro: ', euro_amount)

print('Amount._in US_Dollars: "',
euro_amount =+ euro_dollar_conversion)

Converting Euro to Dollars (2)

>>>
Conversion rate from Euro to US Dollars: 1.12234
Amount in Euro: 125.53

Amount in US Dollars: 140.88734019999998
>>>

Printing strings and variables
Ensure that you understand the difference between
print('euro_dollar_conversion ')

and

print (euro_dollar_conversion)

In the first case, the string “euro_dollar_conversion” is
displayed on the screen

In the second case, the value of the variable
euro_dollar conversion is displayed

euro_dollar_conversion

1.12234

As we have seen, more than one word can be stored in a
string variable

Another Example
Write a program to convert metres to centimetres. A simple (and
fairly useless) Python program to do this is given below. This is
version 1 of the program, other versions are developed as we
proceed through the chapter.

#convert.py: converts metres to centimetres
#Author: Joe Carthy
#Date: 21/10/2022

metres =5
centimetres = metres * 100
print(“The number of centimetres is “, centimetres)

Executing this program produces as output:
% python colour.py

The number of centimetres is 500
%

Interactive programs

Our programs thus far have been very inflexible

Consider a Euro-Dollar conversion program that only
converted e125.53 to Dollars at a rate of 1.12234!

In order to run the program for different values, we must
edit the program and re-interpret it

Usually, we want a program to be interactive

In other words, it should behave differently, depending on
circumstances or context

The most common example of this is trying to capture the

different needs of the users, expressed by allowing them to
give a different input to a program

The input () function

In Python 3, there is only one function: input ()

It takes a string as an argument and displays it as a
prompt (without a trailing newline) in the shell

It then waits for the user to type something, followed by the
Enter key

The input is treated as a string and becomes the value
returned by the function

(The input () function in Python 3 has the same
behaviour as the raw_input () function in Python 2.x)

Using input () (1)

Greeting program
Illustrates the use of the input () function

p16.py

name = input('Enter_your _name: ')
print('Hello,"', name, '.°)

The input() function displays the string and reads

text from the keyboard. This text is assigned to the
variable name in the code above

Using input () (2)

+ Running this program produces the following output:

>>>

Enter your name: John
Hello , John
>>>

 Note the space before the .’

Using input () (3)

Greeting program
Illustrates the use of the input () function

Uses + to prevent extra spaces
p17.py

name = input('Enter_your _name: ')

print('Hello, ' + name + '.")
Using + to remove space before the

U

Using input () (4)

+ Running this program produces the following output:

>>>

Enter your name: John
Hello , John.
>>>

 Note that there is now no space before the ’’

Another Example

colour.py: Prompt use to enter colour and display a message
Author: Joe Carthy
Date: Oct 20 2022

favourite_colour = input(‘Enter your favourite colour:’)
print("Yuk ! | hate °‘, favourite_colour)

% python3 colour.py

Enter your favourite colour: blue

Yuk ! | hate blue
%

Using input () (5)
Second greeting program

Illustrates the use of the input () function
Uses + to prevent extra spaces

p18. py

First of all, get the user's name
name = input('Enter_your _name: ')

print('Hello, ' + name + '.")
Using + to remove space before the '.'

Now get their age

age = input('What_is _your _age? ')
print('Wow, , ' + name +
"1 Your_age_is ' + age + '.")

Using input () (6)

>>>

Enter your name: John
Hello , John.

What is your age? 25

Wow, John! Your age is 25.
>>>

Using input () (7)

Third greeting program
Getting more chatty

p19.py

First of all, get the user's name
name = input('Enter_your _name: ')
print('Hello, ' + name + '.")
Using + to remove space before the '.'

Now get their age
age = input('What_is your age? ')
print('Wow,_' + name +
"1, Your_age_is_, ' + age + '."')
print ('And, twice_ your_ age, would_be_ ',
age * 2, 'years!'")

Using input () (8)

+ Running this program produces the following output:

>>>

Enter your name: John

Hello , John.

What is your age? 25

Wow, John! Your age is 25.

And twice your age would be 2525 years!
>>>

« Uh oh! What happened here?

Using input () (9)

Examining the input from input ()
p20.py

Ask the user for an int
number = input('Enter an_int:_")

print ('Number_is ', number)
print('Twice _the _number _is ', number =« 2)

Now look at the type
print (type (number))

Using input () (10)

+ Running this program produces the following output:

>>>

Enter an int: 1234

Number is 1234

Twice the number is 12341234
<type 'str'>

>>>

« The type () function can be used to find out the type of an
object

Some Types in Python

We have already seen a number of types in Python

int is used to represent integers

Literals of type int are written in the way that we typically
denote integers

For example, 5,123,1000001, -2345

float is used to represent real (or “floating point”)
numbers

Literals of type f1oat include a decimal point
Forexample,1.0,3.1416927,-1234.567

Scientific notation can also be used: 12.34E4 represents
12.34 x 104

bool is used to represent the Boolean values True and
False

Type conversions

+ Type conversions, or type casts, are used in Python code
to convert a value to another type

« The name of the type is used to convert values to that type

>>> x = int('3")
>>> X o+ 2

6

>>> type (X)
<type 'int'>
>>>

- When a float is converted to an int, the number is
truncated, not rounded

>>> int(25.9)
25

Using type conversion (1)

Examining the input from input ()
p24.py

Ask the user for an int
Use a cast to make it an int
number = int(input('Enter an_int:_"))

print ('Number_is ', number)
print('Twice the number is', number = 2)

Now look at the type
print (type (number))

Using type conversion (2)

+ Running this program produces the following output:

>>>

Enter an int: 1234
Number is 1234

Twice the number is 2468
<type 'int'>

>>>

The function int() converts the string from input() to a number:

number = int(input('Enter an int:'))

More on assignment Qutput revisited lnput Types in Python Type conversions

Using type conversion (3)

Program to Convert metres to centimetres using floats.

#convert3.py: converts metres to centimetres
#Author: Joe Carthy

#Date: 21/10/2022

metres = float (input("Enter number of metres: "))

centimetres = metres x 100

print(metres,'metres is ",centimetres," centimetres"

% python convert3.py

Enter number of metres: 3.5

3.5 metres is 350.0 centimetres
%

