
Conditional statements
People are used to making decisions. For example, consider the following sentences:

If I get hungry, I will eat my lunch.

If it gets cold, I will wear my coat.

These two sentences are called conditional sentences. Such sentences have two parts: a condition part (“If I
get hungry”, “If it gets cold”) and an action part (“I will eat my lunch”, “I will wear my coat”).

• The action will be only be carried out if the condition is satisfied.
• To test if the condition is satisfied we can rephrase the condition as a question with a yes or no answer.

• In the case of the first sentence, the condition may be rephrased as “Am I hungry ?” If the answer to the
question is yes, then the action will be carried out (i.e. the lunch gets eaten), otherwise the action is not
carried out.

• We say the condition is true (evaluates to true) in the case of a yes answer.
• We say the condition is false (evaluates to false) in the case of a no answer.
• Only when the condition is true will we carry out the action.
• In programming, we have the same concept. We have conditional statements. They operate exactly as
described above.

• One of the most fundamental of these is known as the if statement. This statement allows us evaluate (test)
a condition and carry out an action if the condition is true.

• In Python, the keyword if is used for such a statement. As an example, we could modify the program to
convert metres to centimetres to test if the value of metres is positive (greater than 0) before converting it
to centimetres.

• The action statement(s) are indented in Python. In the program below, both if statements have action parts
with 2 statements. The action statements end with the first non-indented statement follow the if.

• Note you must put a “:” after the condition in an if statement

convert5.py: converts metres to centimetres version 3
check quantity of metres is positive
Outputs extra blank lines to make it easier to read the output

metres = float (input("\nEnter number of metres: "))

if metres > 0:
centimetres = metres * 100
print(“\n”, metres, "metres is ", centimetres, " centimetres\n\n")

if metres <= 0:
print(“\nPlease enter a positive number for metres\n”)
print(“\nYou entered: ”, metres \n\n")

Running this program:

Enter number of metres: -42
Please enter a positive value for metres
You entered -42

In this example, only one of the conditions can evaluate to true, since they aremutually exclusive
i.e. metres cannot be greater than 0 and at the same time be less than or equal to 0.

This situation arises very frequently in programming i.e.

we wish to carry out some statements when a condition is true and other statements when the same
condition is false

A special form of the if statement is provided called the if-else statement to deal with this situation.

We rewrite the above program to illustrate its usage:

convert6.py: converts metres to centimetres using else
check quantity of metres is positive
Outputs extra blank lines to make it easier to read the output

metres = float (input("\nEnter number of metres: "))

if metres > 0:
centimetres = metres * 100
print(“\n”, metres, "metres is ", centimetres, " centimetres\n\n")

else:
print(“\nPlease enter a positive number for metres\n”)
print(“\nYou entered: ”, metres \n\n")

Running this program:

Enter number of metres: -42
Please enter a positive value for metres
You entered -42

Another example: Program to calculate pay based on the number of hours worked per week.

The program below prompts the user to enter the number of hours worked in a week and the rate of pay per
hour.

Workers can only work a maximum of 100 hours per week and the maximum hourly pay rate is 50.

The amount to be paid is

number of hours worked * the rate of pay per hour

The programs checks that the number of hours worked does not exceed 100 and that the rate of pay does not
exceed 50

pay.py: Calculate and display hourly pay

hours_worked = float(input("\nEnter number of hours worked: "))

if hours_worked > 100:
print("\nHour worked too large:", hours_worked)

else:
rate_per_hour = float(input("\nEnter rate per hour: "))
if rate_per_hour > 50:

print("\nRate per hour too high ", rate_per_hour)
else:

pay = rate_per_hour * hours_worked
print("\nPay = ", pay, "for ", hours_worked, "hours")

Running this program:
Enter number of hours worked: 40

Enter rate per hour: 200

Rate per hour too high 200

There are only six types of condition that can arise when comparing two numbers

They can be tested for
1. equality - are they the same ? metres == 0
2. inequality – are they different ? metres != 0
3. is one greater than the other ? metres > 0
4. is one less than the other ? metres < 0
5. is one greater than or equal to the other ? metres >= 0
6. is one less than or equal to the other ? metres <= 0

Technically, the symbols ==, !=, <, >, <=, and >=, are called relational operators, since they are concerned with
the relationship between numbers.

We call a condition metres < 0 a Boolean expression

This means that there are only two possible values (true or false) which the expression can yield.

The term expression is widely used in programming. Informally it means something that yields a value.

We are familiar with arithmetic expressions such as 2+2 which evaluates to 4.

A Boolean expression is one which evaluates to either true or false.

The right-hand side of an assignment statement is always an expression.

Another example, a calculator program to handle either subtraction or addition.

The user is prompted for the first number, then to enter a ‘+’ or ‘-’ character to indicate the operation to be
carried out, and finally for the second number.

The program calculates and displays the appropriate result e.g.

Enter first number: 9
Enter operation (+ or -): -
Enter second number: 4
Taking 4.0 from 9.0 is 5.0

calc2.py: Calculator program to add or subtract numbers

number1 = float(input("\nEnter first number: "))

operation = input(“\nEnter operation + or –“)

number2 = float(input("\nEnter second number: "))

if operation[0] == ‘+’:
sum = number1 + number2
print("\n\nThe sum of",number1,"and",number2, "is", sum, "\n\n")

else:
diff = number1 - number2
print("\n\nTaking ",number2,"from",number1, "is", diff, "\n\n")

Note: operation[0] gives us the first element of the string entered by the user

The above programs “assumes” that if the operator is not ‘+’ then it must be ‘-‘

But the user could have hit the wrong key !

The following version checks for ‘+’, or ‘-‘ and the possibility that it was neither ‘+’ or ‘-‘
that is the user made a mistake.

User data entry mistakes are very common and good programmers always check that the user input
is what was expected.

We use a third variant of if in the program below called if elif else

calc3.py: Calculator program to add or subtract 2 numbers

number1 = float(input("\nEnter first number: "))

operation = input(“\nEnter operation + or –“)

number2 = float(input("\nEnter second number: "))

if operation[0] == ‘+’:
sum = number1 + number2
print("\n\nThe sum of",number1,"and",number2, "is", sum, "\n\n")

elif operation[0] == ‘-’:
diff = number1 - number2
print("\n\nTaking ",number2,"from",number1, "is", diff, "\n\n")

else:
print(“\nInvalid operation only + and – allowed\n”)
print(“You entered: “, operation[0])

Executing this program produces as output:

Enter first number: 9

Enter operation (+ or -): *

Enter second number: 4

Invalid operation – only + and – allowed
You entered: *

Comparison operators Boolean operators Conditional statement Conditional statement in Python

Outline

Comparison operators

Boolean operators

Conditional statement

Conditional statement in Python

Comparison operators Boolean operators Conditional statement Conditional statement in Python

Comparison operators in Python

Python Operator Operation
== Equals
! = Not equals
< Less than
<= Less than or equal to
> Greater than
>= Greater than or equal to

Comparison operators Boolean operators Conditional statement Conditional statement in Python

Boolean operators in Python 3.x

• There are three Boolean operators: and, or and not
• a and b: If a is False, it returns a, otherwise it returns b
• a or b: If a is False, it returns b, otherwise it returns a
• not a: If a is False, it returns True, otherwise it returns
False

Python Operator Operation
not
and
or

Logical NOT
Logical AND
Logical OR

Comparison operators Boolean operators Conditional statement Conditional statement in Python

Using Boolean operators in Python
>>> a = 2
>>> b = 3
>>> c = 10
>>> d = 10
>>> a < b
True
>>> c > b
True
>>> c < d
False
>>> d == d
True
>>> c == d
True
>>> c != d
False

Comparison operators Boolean operators Conditional statement Conditional statement in Python

Conditions

• We are familiar with making decisions based on conditions

• If I am hungry, I will eat my dinner
• If I am cold, I will put on my coat
• If the number is even, I will divide the number by 2
• Such sentences are called conditional sentences

• Such sentences have two parts:
• A condition or test:

If I am hungry, If I am cold, If the number is even
• An action:

I will eat my dinner, I will put on my coat, I will divide the
number by 2

• The action will only be carried out if the condition is
satisfied (or the test is true)

• Optionally, there is another action that will be carried out if
the condition is not satisfied (or the test is false)

Comparison operators Conditional statement in PythonBoolean operators Conditional statement

Sequential statements

• The programs that we have seen so far have contained
only sequential statements

• Such programs follow a sequential flow of control

• There is a single execution path through the program

• These can be called straight-line programs
• In such a program, statements are executed in the order in

which they appear

• The program stops when control reaches the final
statement

• The type of problem that we can solve with such a program
is very simple and very limited

Comparison operators Conditional statement in PythonBoolean operators Conditional statement

Conditional statements

• Most programming languages allow for programs that have
more than one execution path through them

• Such programs follow a conditional flow of control

• These can be called branching programs
• A conditional statement has two or three parts:

• Optionally, a statement, or block of statements, that is
executed when the condition evaluates to False

• A test, ie an expression that evaluates to either True or
False

• A statement, or block of statements, that is executed when
the condition evaluates to True

• After the conditional statement, execution resumes at the
statement following the conditional statement

Comparison operators Conditional statement in PythonBoolean operators Conditional statement

Conditional statements

• Conditional statements allow us to change the flow of
control in a program

• Within a program, a condition can be tested and actions
carried out only if the condition is True

• This gives programs much more power and flexibility

Comparison operators Boolean operators Conditional statement Conditional statement in Python

Conditional statement in Python (1)

• In Python, a conditional statement has one of the following
forms:

• if Boolean expression:
statement(s)

• if Boolean expression:
statement(s)

else:
statement(s)

• if Boolean expression:
statement(s)

elif Boolean expression:
statement(s)

else:
statement(s)

Comparison operators Boolean operators Conditional statement Conditional statement in Python

Conditional statement in Python (2)

• In describing the forms of the conditional statement, italics
are used to describe the type of Python code that can
occur at that point in the statement

• Boolean expression indicates that any expression that
evaluates to True or False can follow the reserved words
if or elif

• statement(s) indicates that any sequence of Python
statements can appear at those points

Comparison operators Boolean operators Conditional statement Conditional statement in Python

Using the conditional statement in Python (1)

• Consider the following program that prints “Number is
zero” if the number entered by the user is 0

Using the cond i t i ona l statement
number# P r i n t s 'Number i s zero ' i f the

entered is 0
p25 . py

Ask the user f o r inpu t
Use a cast to make i t an i n t
number = in t (input (' Enter an i n t : '))

i f number == 0:
print ('Number

print (' F inished ! ')
i s zero ')

Comparison operators Boolean operators Conditional statement Conditional statement in Python

Using the conditional statement in Python (2)

• Example outputs from this program are the following:

>>>
Enter an in t : 123
Finished !
>>>
>>>
Enter an in t : 0
Number is zero
Finished !
>>>
>>>
Enter an in t : − 5
Finished !
>>>

Comparison operators Boolean operators Conditional statement Conditional statement in Python

Evaluating the Boolean expression

• The expression number % 2 == 0 evaluates to True
when the remainder of number divided by 2 is 0, and
evaluates to False otherwise

• Recall that == is the operator used for comparison

• The = operator is used only for assignment

• A number is even (2, 4, 6, 8, …) if it is divisible by 2

• A number is divisible by 2 if

number % 2 == 0
evaluates to True

Comparison operators Boolean operators Conditional statement Conditional statement in Python

Using the conditional statement in Python (3)
• Consider the following program that tests the number

entered by the user and prints “Number is even” or
“Number is odd”

Using the cond i t i ona l statement
P r i n t s 'Number i s even ' or
'Number i s odd '
p26 . py

Ask the user f o r inpu t
Use a cast to make i t an i n t
number = in t (input (' Enter an i n t : '))

i f number % 2 == 0:
i s even ')

i s odd ')

print ('Number
else :

print ('Number
print (' F inished ! ')

Comparison operators Boolean operators Conditional statement Conditional statement in Python

Using the conditional statement in Python (4)

• Example outputs from this program are the following:

>>>

2424

Enter an in t : 3
Number is odd
Finished !
>>>
>>>
Enter an in t :
Number is even
Finished !
>>>

Comparison operators Boolean operators Conditional statement Conditional statement in Python

Indentation

• Note that indentation is significant in Python
• Statements at the same level of indentation belong to the

same block of statements

• Different languages use different mechanisms to mark
blocks of statements

• For example, Pascal uses begin and end keywords

• C and Java use braces (curly brackets), ie { and }
• Some languages use the keyword that introduces the block

spelled backwards, eg if and fi
• Python is unusual in using indentation in this way.

• Programs should be indented

• Python’s indentation forces the programmer to indent their
programs properly and in a standard way

Comparison operators Boolean operators Conditional statement Conditional statement in Python

Currency Conversion Program: Algorithm

• Consider a more sophisticated program to convert Euro to
Dollars

• We only want to convert Euro amounts that are greater
than zero

• We start off by writing an algorithm for this program

Prompt the user for a Euro amount
Read the Euro amount
if the Euro amount ≥ 0 then

Perform the conversion
Print out the Dollar amount

else
Tell the user that the amount must be ≥ 0

Program finishes

Comparison operators Boolean operators Conditional statement Conditional statement in Python

Currency Conversion Program: Program
Converting Euro to US Dol lars
p27 . py

rate = 1.117 # 1 euro = 1.117 usd

Ask the user to enter the Euro amount
euro_amount = in t (input (' Enter amount of Euro: ‘))
print (' Amount in Euro : ' , euro_amount)

euro_amount * rate)
i f euro_amount >= 0:

print (' Amount in Do l la rs : ' ,
else :

print (' Amount must be >= 0. ')
print (' Please t r y again . ')

print (' F inished ! ')

Comparison operators Boolean operators Conditional statement Conditional statement in Python

Currency Conversion Program: Output
• Example outputs from this program are the following:

Enter the amount of Euro you wish to convert : 1000
Amount in Euro : 1000
Amount in US Dol la rs : 1117.0000
Finished !

>>> ================================ RESTART ===
Enter the amount of Euro you wish to convert : 0
Amount in Euro : 0
Amount in US Dol la rs : 0.0
Finished !
>>> ================================ RESTART ===
Enter the amount of Euro you wish to convert : −1
Amount in Euro : −1
Amount must be >= 0.
Please t ry again .
Finished !
>>>

Conditional statement String operationsBoolean conditions Chained expressions Leap years

Conditional statement (1)

i f num > 0:
print ('Number i s p o s i t i v e . ')

e l i f num == 0:
print ('Number i s equal to 0 ')

else :
print ('Number i s negat ive . ')

Conditional statement String operationsBoolean conditions Chained expressions Leap years

Conditional statement (2)

i f num == 0:
print ('Number

e l i f num > 0:
print ('Number

i s equal to 0 ')

i s p o s i t i v e . ')
else :

print ('Number i s negat ive . ')

Conditional statement String operationsBoolean conditions Chained expressions Leap years

Conditional statement (3)

i f num > 0:
print ('Number i s p o s i t i v e . ')

e l i f num == 0:
print ('Number i s equal to 0 ')

e l i f num < 0:
print ('Number i s negat ive . ')

Conditional statement Leap years String operationsBoolean conditions Chained expressions

Boolean conditions (1)

shoul

• We have already seen the three Boolean operators: and,
or and not

• These can be used to create complex Boolean conditions

i f num_hours < 0 or num_hours > 168:
print ('Number of hours worked per week

p o s i t i v e and be a maximum of 168! ')

Conditional statement Leap years String operationsBoolean conditions Chained expressions

Boolean conditions (2)

• Consider the following:

i f num > 20:
i f num % 2 == 0:
print ('Number

• and

i s even and greater than 20 '

i f num > 20 and num % 2 == 0:
print ('Number i s even and greater than 20 ')

Conditional statement Leap years String operationsBoolean conditions Chained expressions

Boolean conditions (3)

• Consider the following:

i f num > 20 and num % 2 == 0:
print ('Number i s even and greater than 20 ')

• and below which does NOT behave same as above

i f num > 20 or num % 2 == 0:
print ('Number i s even and greater than 20 ')

The second one is incorrect – it will execute the print if
either num > 20; or if num % 2 == 0

Conditional statement Leap years String operationsBoolean conditions Chained expressions

Boolean conditions (4)

• Consider the following:

i f num_hours < 0 or num_hours > 168:
print ('Number of hours worked per week '
' should be p o s i t i v e and be a maximum of 168 ! ')

• and incorrectly

i f num_hours < 0 and num_hours > 168:
print ('Number of hours worked per week '
' should be p o s i t i v e and be a maximum of 168! ')

The second print will never be executed because num_hours
cannot be BOTH < 0 and > 168 at the same time.

Conditional statement Leap years String operations

Letters

The uppercase letters are A, B, C , … to Z

The lowercase letters are a, b, c, …. to z

We can check if a variable letter is uppercase by the
test

If letter >= ‘A’ and letter <= ‘Z’ then the
letter must be in the range from A to Z

Similarly to test for lowercase
If letter >= ‘a’ and letter <= ‘z’ then the
letter must be in the range from a to z

Conditional statement Leap years String operations

• Consider the following:

s = input(”\n Enter y or Y: “)
if (s[0] == ‘y’) or (s[0] == ‘Y’):
print(‘\nYou entered y or Y’)

s = input(”\n Enter a letter a to z: “)
if (s[0] < ‘a’) or (s[0] > ‘z’):
print(‘\n Not a lowercase letter’, s[0])

s = input(”\n Enter a letter A to Z: “)
if (s[0] < ‘A’) or (s[0] > ‘Z’):
print(‘\n Not an uppercase letter’, s[0])

Conditional statement Leap years String operations

s = input(”\n Enter a letter a to z: “)
if (s[0] >= ‘a’) and (s[0] <= ‘z’):
print(‘\n Yes - lowercase letter’, s[0])

s = input(”\n Enter a letter A to Z: “)

if (s[0] >= ‘A’) and (s[0] <= ‘Z’):
print(‘\n Yes uppercase letter’, s[0])

