
Functions

Functions (1)

• We have developed a number of programs so far

• While the code is useful, it is limited in its general use

• If we want to reuse the code, we have to copy the code,
possibly edit it to change variable names, constants, etc

• We would like to be able to use our code again and in
more complex programs

• Functions allow us to name segments of code and this
can really help to make our programs easier to read
and hence to understand.

• This is also an excellent reason for using functions
even if we only use them once in a program.

Functions (2)

• For example, consider our program to calculate the pay
of an employee

• If we wanted to have a program to also calculate the tax,
to be paid, we would have to copy the pay calculation
code, possibly edit the variable names, include the extra
code to calculate the tax and paste it to where we want it

• The more code a program contains, the bigger the chance
there is of an error occurring and the harder it is to
maintain the program

• For example, say that we discovered that our pay
calculation program had an error

• After fixing the error, we would then have to repeat that fix
in the tax calculation program

Functions in Python

• We have already used a number of built-in functions:
• range()
• len()
• print()
• . . .

• The facility for programmers to define and subsequently
use their own functions marks “a qualitative leap forward in
convenience”

Defining functions in Python

• In Python, each function definition is of the following form:

def name of function (list of formal parameters):
statement(s)

• def is a reserved keyword that introduces the definition of
the function

• The function name is simply an identifier (a name) that is
used to refer to the function

def max(a, b):
if a > b:

return a
else:

return b

Formal and actual parameters

• The formal parameters of the function are the sequence of
names within the parentheses after the function name
((a, b) in our example)

• When the function is used, ie at function invocation or
function call, the formal parameters are bound to the
values of the actual parameters or arguments

• This binding is similar to the binding that takes place in an
assignment statement

• For example, the function call max(2, 5) binds a to 2 and
b to 5

• 2 and 5 are the arguments to max

• a and b are the parameters of max

Example

#f1.py: show use of functions
def max(a, b):

if a > b:
return a

else:
return b

x = 4
y = 10
m = max(x, y)
print(f"Maximum = {m} \n")
i = int(input("\nEnter an integer: "))
j = int(input("\nEnter an integer: "))
m = max (i, j)
print(f"Maximum = {m} \n")

Formal and actual parameters

Running f1.py:

Maximum = 10

Enter an integer: 2

Enter an integer: 6
Maximum = 6

Formal and actual parameters

#f2.py: show use of functions
def max(a, b):

if a > b:
return a

else:
return b

x = 4
y = 10
print(f"Maximum = {max(x, y)} \n")
i = int(input("\nEnter an integer: "))
j = int(input("\nEnter an integer: "))
print(f"Maximum = {max(i,j)} \n")

Function body

• The function body may be any Python code.

• The body of max is:

if a > b:
return a

else:
return b

• You can have as many statements as you wish in the
function body but a good rule of thumb for function
length is that you should be able to read the whole
function on one screen i.e. about 24 lines.

• If a function body is very long then you may be able to
break it into two or more separate functions.

Function body

• The function body, when executed, carries out the
actions of the function

• A function invocation is an expression and, like all
expressions, it has a value

• That value is the value returned by the invoked function

• There is a special statement, return, that can only be
used within the body of a function

• This statement returns the value from the function to the
expression in which it was invoked

The return statement

• For example, the value of the expression max(2, 5) is 5

• The value of the expression max(4, 3) * max(2, 5) is
20 (the first invocation of max returns 4 and the second
invocation returns 5)

• Execution of a return statement terminates that
invocation of the function

• If there is no value specified after the return statement,
the special value None is returned

• If there is no return statement, the invocation of the
function continues until there are no more statements to
execute

• In this case, the value None is returned

menu.py: Display a menu of options

def display_menu():
print '''

0 Quit

1 Calculate area of triangle

2 Calculate area of circle

3 Calculate area of rectangle

'n\n\n

‘’’

return

display_menu()

Running menu.py:

0 Quit

1 Calculate area of triangle

2 Calculate area of circle

3 Calculate area of rectangle

Note use of ‘’’ in print to display a multi line string

menu.py: Display a menu of options

import math
pi = math.pi

def display_menu():
print ('''

0 Quit
1 Calculate area of triangle
2 Calculate area of circle
3 Calculate area of rectangle
\n\n\n
''')

return

def get_user_option():
option = int(input('\n\nEnter option: '))
return (option)

def area_of_circle(radius):
area = pi * radius ** 2
return area

def get_radius():
radius = float(input('Enter radius: '))
return radius

def get_base():
base = float(input('Enter base: '))
return base

def get_height():
height = float(input('Enter height: '))
return height

def get_breadth():
breadth = float(input('Enter breadth: '))
return breadth

def get_length():
length = float(input('Enter length: '))
return length

def area_of_triangle(base, height):
area = (base * 0.5) * height
return area

def area_of_rectangle(length, breadth):
area = length * breadth
return area

display_menu()

option = get_user_option()

while option != 0:
if option == 1:

b = get_base()
h = get_height()
print (f'Triangle area: {area_of_triangle(b,h)} \n\n')

elif option == 2:
r = get_radius()
print (f'Circle area: {area_of_circle(r):.2f} \n\n')

elif option == 3:
l = get_length()
b = get_breadth()
print (f'Rectangle area: {area_of_rectangle(l,b)} \n\n')

display_menu()
option = get_user_option()

print('\n\n Finished Areas program\n\n')

We can shorten the loop body above by calling the functions inside the print function but which
version is easier to read ?

if option == 1:
print (f'Triangle area: {area_of_triangle(get_base(), get_height())} \n\n’)

elif option == 2:
print (f'Circle area: {area_of_circle(get_radius()):.2f} \n\n’)

elif option == 3:
print (f'Rectangle area: {area_of_rectangle(get_length(),

get_breadth())} \n\n’)

print('\n\n Finished Areas program\n\n')

We can also shorten the function definitions:

Change
def get_radius():

radius = float(input('Enter radius: '))
return radius

To
def get_radius():

return float(input('Enter radius: '))

Again, which version is easier to read

Exercise: Write a function process_user_option(option) so
the program below will function as the previous version

menu3.py

display_menu()

option = get_user_option()

while option != 0:
process_user_option(option)
display_menu()
option = get_user_option()

print('\n\n Finished Areas program\n\n’)

Note how simple the main loop is in our program, when we write it using
functions.

def process_user_option(option):
if option == 1:

print (f'Triangle area: {area_of_triangle(get_base(),get_height())}\n\n')
elif option == 2:

print (f'Circle area: {area_of_circle(get_radius()):.2f} \n\n')
elif option == 3:
print (f'Rectangle area: {area_of_rectangle(get_length(), get_breadth())} \n\n')

return

option = get_user_option()

while option != 0:
process_user_option(option)
display_menu()
option = get_user_option()

print('\n\n Finished Areas program\n\n')

Modules

• So far, all our programs have been in a single file

• This is fine as long as programs are small

• However, as programs get larger, it is more convenient to
store different parts of them in different files

• This allows you create files with useful functions that
can be used in many different programs, without
have to define them in each program

• Python modules allow us to easily construct a
program from code in multiple files

• A Python module is a .py file containing Python definitions
and statements

• For example, we could create a module (file) circle.py
containing the following:
pi = 3.1415927

def area(radius):
return pi * (radius ** 2)

def circumference(radius):
return 2 * pi * radius

def sphereVolume(radius):
return (4.0 / 3.0) * pi * (radius ** 3)

Using Modules
• A program gets access to a module through an import statement

• To use a function from a module, you put the module name. before
the function name as

module_name.function()
mod.py: program to call functions from module

import circle # do not add .py

print(circle.pi)
print(circle.area(3))
print(circle.circumference(3))
print(circle.sphereVolume(3))

Running mod.py produces the following:
3.1415927
28.2743343
18.8495562
113.0973372

Create a file called mf.py with the definitions of the functions we used in
menu programs shown earlier.

mf.py: code of functions for our menu3.py program

import math
pi = math.pi

def get_radius():..
def get_base():..
def get_height() :..
def get_breadth():..
def get_length():..
def area_of_triangle(base, height): ..
def area_of_rectangle(length, breadth):..
def area_of_circle(radius :..
def get_user_option():..
def display_menu():..
def process_user_option(option):..

We can now use the functions from mf.py in any program by importing the module into the
program where we wish to use them. For example, we can create a new program in a separate
file menu4.py with the following code:

menu4.py: Display a menu of options and use functions from
the module mf.py

import mf

mf.display_menu()

option = mf.get_user_option()
while option != 0:

mf.process_user_option(option)
mf.display_menu()
option = mf.get_user_option()

print('\n\n Finished Areas program\n\n')

Another Example of a function to compute the factorial of a number
Factorial 5 written as 5! = 5 * 4 * 3 * 2 * 1
Factorial written as n! = n * (n-1) * (n-2) * (n-3) … * 1

fact.py: Calculate the factorial of a number

def fact(x):
result = 1
for i in range(1, x+1):

result = result * i
return result

Prompt the user for an integer

number = int(input('Enter a number (an int >= 0): '))

if number >= 0:
print(f'\nThe factorial of {number} is {fact(number)}')

else:
print(f'\nCannot compute factorial of neg number {number} \n')

fact2.py: Calculate the factorial of numbers
until user enters a negative number

def fact(x):
result = 1
for i in range(1, x+1):

result = result * i
return result

Prompt the user for an integer

number = int(input(‘\nEnter a number (negative to quit): '))

while number >= 0:
print(f'\nThe factorial of {number} is {fact(number)}’)
number = int(input(‘\nEnter a positive number (negative to quit): '))

Running fact2.py:

% python3 fact2.py
Enter a number (negative to quit): 4

The factorial of 4 is 24

Enter a positive number (negative to quit): 8

The factorial of 8 is 40320

Enter a positive number (negative to quit): 10

The factorial of 10 is 3628800

Enter a positive number (negative to quit): -1

%

Scope
Consider the following example:

Program to illustrate scoping in Python

def f(x):
print (‘In function f: ‘)
x = x + 1
y = 1
print(’x is’, x)
print(’y is’, y)
print(’z is’, z)
return x

x, y, z = 5, 10, 15

print(’Before function f:’)
print(’x is’, x)
print(’y is’, y)

print(’z is’, z)

z = f(x)

print(’After function f:’)
print(’x is’, x)
print(’y is’, y)
print(’z is’, z)

Scoping

This program produces the following output:

Before function f:
x is 5
y is 10
z is 15

In function f:
x is 6
y is 1
z is 15

After function f:
x is 5
y is 10
z is 6

The scope of a variable is the block of code in the entire program
where the variable is declared, used, and can be modified. In the
function f, the variable y is local to f. Any changes made to y in the
function f, do NOT affect a variable y declared outside the function f

def f(x):
print (‘In function f: ‘)
x = x + 1
y = 1
print(’x is’, x)
print(’y is’, y)
print(’z is’,z)
return x

Thus variable y still has the value 10 after f has been called. The
variable y inside f is NOT the same as the variable y outside f.

In the same way, the function does not change the value of the
argument x outside of the function.

