
 1

Make sure to do the assignments for BOTH Section 1 and Section 2 below

Section 1: Python Programs

Week 1

1. Copy all the programs from the Weekly Sessions and get them to work

2. Modify any one of the above programs to change its output

3. Program 1: Write a program to display the message “Hello everyone” three times, on
separate lines on the screen using 3 print() statements

Hello everyone
Hello everyone
Hello everyone

4. Modify Program 1 to produce the same output BUT using only 1 print()

Hint: When you put ‘\n’ in a string, the print() function starts a newline e.g.

print(‘Bye \n Bye\n’)

outputs
 Bye
 Bye

5. Write a program that prints out your name, followed by a blank line, followed by your
address, followed by a blank line, followed by your telephone number (you may make up
an address and a telephone number). Save this program as p1_5.py.

Week 2

1. Create and run the beep program below

beep.py: Just for fun - beep 3 times !!

print("\a \a \a")

(a) Modify Program 1 from Week 1, number 3 above, to beep after it displays each line
(b) Modify the program to beep twice before it displays each message

 2

2. Write a program that uses a single print command with a number of arguments to print to the screen the

strings “Hello,” and “world.” The output should include a space between the comma and the word
“world”.
Save your program as p2.py.

3. Write a program that uses a single print command with a single argument to print to the screen the
concatenation of the strings “Hello,” and “world.” Again, the output should include a space between
the comma and the word “world”.
Save your program as p3.py.

4. Write a program that assigns to a variable the concatenation of the strings “Hello,” and “world.” and
includes a space between the comma and the word “world”. The program should then print out the
value of this variable.

Save your program as p4.py.

For each of the following programs, use assignment statements to give values to variables.

5. Write a program that takes an amount of currency (a float) and an exchange rate to another
currency (a float) and prints out the value of the original amount in the other currency. (Use
today’s exchange rate for two currencies of your choice.)

Save this program as p5.py.

6. Write a program that takes a single length (a float) and calculates the following:
• The area of a square with side of that length. (length * length)
• The volume of a cube with side of that length. (length ** 3)
• The area of a circle with diameter of that length (3.14 * (length/2)**2))

You can use 3.1415927 for the value pi.

Save this program as p6.py.

7. Write a program that takes an amount (a float), and calculates the tax due according to a tax rate of
20%
Save this program as p7.py.

Week 3

1. Create and runs the programs convert5.py and convert6.py from the section on Conditional
Statements, in the Handbook Introduction to Programming

2. Modify the calculator program calc3.py from the section on Conditional Statements, in the
Handbook Introduction to Programming to handle multiplication and division as well as addition
and subtraction.

3. Write a program to read three numbers and display the largest and smallest of the numbers entered.

4. Write a program to simulate a cash register for a single purchase. The program should read the unit

cost (real number) of an item and the numbers of items purchased. The program should display the
total cost for the items. If the unit cost is greater than 10000, the program should display an error

 3

message, “Invalid unit cost – too large”. If the unit cost is 0 it should display an error message,
“Unit cost cannot be 0”.

Enter unit cost: 5.5
Enter number of units: 10
Total cost: 55.0

Enter unit cost: 0
Unit cost cannot be 0

5. Write a program to show a menu of areas to be calculated and to calculate the rea chosen by the

user. The menu you are to display, is shown in italics below

Choose the area you wish to calculate from the menu below

 a for the area of a square
 b for the area of a circle

c for the area of a rectangle

Enter your choice:

The program should prompt for the dimensions of the area:

length of a side in the case of a (area = length **2);
radius in the case of b (area = 3.14 * r**2)
length and breadth in the case of c (area = length * breadth).

6. Write a program to read a string from the user and display an appropriate message depending on the
first character of the string indicating if the character was an uppercase letter, a lowercase letter or a
digit (‘0’ to ‘9’). Sample outputs are shown below:

Enter a string: A
You entered an uppercase letter

Enter a string: b
You entered a lowercase letter

Enter a string: 5
You entered a digit

Enter a string: &
You did not enter a letter or a digit.
You entered &

Week 4

1. Modify Program 4 from Week 3 to allow the user keep entering unit cost and number of units.
The program terminates when the user enters -1 for unit cost.

2. Modify Program 5 from Week 3 to use a loop to allow the user keep choosing an area to
calculate until the user enters q or Q to quit.

 4

3. Write a program to convert Khat to dollars. The program should continue running until the user
enters q or Q to quit e.g.

Enter Khat or q to quit:

4. Write a program to using a loop to

read number of hours worked per week (maximum is 100)
read rate per hour (max is 50)
compute gross pay (pay before tax)
compute tax at 10% of pay if pay > 100
tax is 0 if pay <100
display result as

Gross Pay: 200 rate: 10 Hours worked: 40
Tax: 20
Net Pay: 180

Press Y to continue for another employee:

5. Write a program to display 10 lines with
9 Spaces followed by 1 star on line 1;
8 spaces followed by 2 stars on line 2,
7 spaces followed by 3 stars on line 3 and so on

0 spaces and 10 stars on line 10
 The output should appear as follows:

 *
 **

6. Modify program 5 above to output a what looks like a “tree” as follows

 *

7. Write a program to read a string and display it, replacing any occurrence of A in the string by o:

Enter a string with an A in it: ABBA
Replacing A with o gives: oBBo

8. Write a program to read a string and count the number of digits (0,1,2,..9) in it

Enter a string: 12abc34def56
There are 6 digits in 12abc34def56

 5

Hint: if s[i] >=’0’ and s[i] <= ‘9’ then s[i] contains a digit.

9. Write a program to read a string and count the number of uppercase letters (A..Z) and
lowercase letters (a..z) in the string

Enter a string : ABC defg
3 uppercase letters and 4 lowercase letters in ABC defg

Hint: if s[i] >=’A’ and s[i] <= ‘Z’ then s[i] contains an uppercase letter.

Week 5

1. Copy and run the programs create.py, read.py, wc.py and copy.py, from the Handbook.

2. Write a program to create a file called hours.txt with the following lines(name and hours worked
on separate lines):
Joe
34
Mary
42
Jack
63
Ann
21

3. Write a program to read the names and hours worked stored in hours.txt. The program should
calculate and display the pay for each person assuming a rate of 10 per hour:
Joe 340
Mary 420
Jack 630
Ann 210

4. Write a program secret.py to read a secret word from the user and store it in the file secret.txt.

5. Write a program guess.py to give the user 4 chances to guess the secret word stored in secret.txt.

6. Modify secret.py to allow the user to store as many secret words as they wish, each on a separate
line in the file.

7. Modify guess.py to allow the user keep playing the guessing game until (a) they have used all the
secret words that were stored in secret.txt or (b) the user decides to quit by entering quit as a guess.

8. Write a program that reads a python program, file and checks that brackets (and) are balanced, ie
there should never be a situation where there are more right brackets than there are corresponding
left brackets and the total number of right brackets should equal the number of left brackets.

Your program should return the total number of each bracket and a message indicating whether or
not the file has balanced brackets.

9. Write a program display.py to display a file specified by the user:

 6

Enter name of file to be displayed: names.txt

Contents of names.txt are shown here

10. Modify display.py to display the file contents 5 lines at a time. The program pauses after

displaying 5 lines until the user presses either Q to quit or Return to display the next 5 lines. As in
previous programs, we read the filename from user and open it appropriately. We then process the
file:

read line from file
linecount = 1
while ((not end of file) and (user not finished)

display line
linecount = linecount + 1

if linecount == 5

linecount = 1
 prompt user to continue displaying or quit
read next line from file # end while loop

11. Write a program to compare two files specified by the user, displaying a message indicating

whether the files are identical or different. This is the basis of a compare command provided by
most operating systems. The pseudo code below outlines an algorithm for this program – convert it
to Python. The term pseudo code is used for language that looks like a programming language.

prompt user for name of first file say fileA

check if file exists, quitting if it does not

prompt user for name of second file say fileB

check if file exists, quitting if it does not

open fileA

open fileB

read string sa from fileA
read string sb from fileB
while ((sa == sb) and (not EOF file A) and (not EOF file B))

read string sa from fileA
read string sb from fileB # end of while loop

if (sa == sb)

display “Files identical”
else

display “Files differ”

Note: There are 3 reasons for the while loop to finish:

1. The strings are the same but we have reached the end of the 2 files and hence the file must be the
same

 7

2. The strings differ and hence the files differ
3. We have reached the end of 1 file but not the other file and hence the file differ

Week 6

1. Copy and run the programs guess3.py, tel.py, tel2.py and tel3.py, from the
Handbook.

2. Modify the program guess3.py to read a list of 10 secret words from a file called guess.dat
and allow the user to play the guessing game until the user want to quit or all 10 words have been
used in the game.

3. Change the print() function in the above programs to use f-strings where possible in displaying
the value of variables.

4. Write a program create_payroll.py to create a file called payroll.dat which stores
employee names, rate of pay and hours worked. These values are read from the user until a blank
name is entered.

The format of payroll.dat is:

Joe Bloggs 10.50 40
Mary Smith 12.00 60
John Dunnion 12. 50
Jane Doe 10.50 35

5. Write a program compute_pay.py to read the employee data from the file payroll.dat and
display the pay for each employee:

Joe Bloggs Pay is 420.0 for 40 hours at 10.50 per hour
Mary Smith Pay is 720.0 for 60 hours at 12.00 per hour
John Dunnion Pay is 600.0 for 50 hours at 12.00 per hour
Jane Doe Pay is 367.5 for 35 hours at 10.50 per hour

6. Modify compute_pay.py to store its output in a new file called payroll.out instead of
displaying it on the screen.

7. Write a Python program that checks whether the strings “cat” and “dog” appear the same number
of times in a given string input by the user.

 8

Week 7

1. Write a function nsum(number) to calculate the sum of the integers up to and including
number e.g . print (nsum(3)) prints 6

2. Write a function that takes two strings as arguments and returns the number of times that the
second string appears anywhere in the firts string e.g.
s = ‘to be or not to be to know or not to know’
n = scount(s, ‘to’)

gives n the value 4

3. Write a function scmp(s1,s2) that takes as arguments two strings and returns True if
either of the strings appears at the very end of the other string, ignoring upper/lower case
differences (in other words, the computation should not be case sensitive). E.g
scmp(‘hello’, ‘lo’) returns true
scmp(‘bye’, ‘goodbye’) returns true

4. Create an expenses data file with entries of the form <date amount description place> e.g.

1 Nov 2022 23.50 Groceries Tesco
3 Nov 2022 50.00 Petrol High Road Fuels
3 Nov 2022 20 cinema UCC
10 Nov 2022 40.00 Petrol Wicklow
15 Nov 2022 43.40 Groceries Tesco

Write a program called expenses.py that prompts the user to search the list and displays the
lines and total the amount spent for the entry the user is looking for:

$ python3 expenses.py

Enter item to display expenses for: groceries

1 Nov 2022 23.50 Groceries Tesco
15 Nov 2022 43.40 Groceries Tesco
Total spent: 47.00

Enter item to display expenses for: petrol

3 Nov 2022 50.00 Petrol High Road Fuels
10 Nov 2022 40.00 Petrol Wicklow
Total spent: 90.00

Use a function to search the list

 9

5. Modify the expenses program above so that it only prints the total amount spent if that parameter

is present:

$ python3 expenses2.py

Enter item to display expenses for: groceries

Total spent: groceries: 47.00

Enter item to display expenses for: nov

Total spent: nov: 157.00

6. Implement the program stolen.py from the Handbook Introduction to Python Programming

Questions 7 to 17 are modifications of earlier programs you have written:

Rewrite programs 3 to 11 from Week 5 so that each one uses one or more functions.

Rewrite programs 4 and 5 from Week 6 so that each one uses one or more functions.

 10

Section 2: Weekly Exercises

Week 1

1. Make the following deliberate errors in a Python program and explain what happens

a. Omit ” at end of a string
b. Omit “(“ from a print statement
c. Omit “)” from a print statement
d. Misspell print as “prince”

1. Explain the concept of variable

2. Explain what is meant by the type of variable

3. Why do we need to use meaningful variable names ?

4. Which of the following are valid Python variable names

a. Tax1123
b. Tax456
c. 12tax
d. Tax_code
e. Tax-code
f. Tax.code
g. print

Week 2

1. What is the difference between an algorithm and a program ?

2. What is a syntax error ?

3. Why should you use comments in a program ?

4. What type does the input() function return ?

5. How can we convert the type returned by input() to a float ?

 11

Week 3

1. What will the following code fragments display:

(a)

n = 10

if n == 10:
 print(“n is 10”)
else:
 print(“n is not 10”)

(b)
n = 0

if n =10
 print(“n is 10”)
else
 print(“n is not 10”)

Explain the error in this code fragment

2. What is a Boolean expression ?

3. What values can a Boolean expression take ?

Week 4

2. What sequences will the following range functions produce
a. range(10)
b. range(10, 14)
c. range(2,10)
d. range(10, 4, -1)
e. range(100, 10, -10)
f. range(1, 10)
g. range (10, -1,-1)
h. range(5, -2, -1)

3. Will the following loop finish ?

j = 0
while j < 10:
 print(“j = “, j)
j = j + 1

Week 5

1. What is the difference between opening a file for reading and for writing ?

2. Why should we check if a file exists before we open it for reading ?

 12

3. Why do we need to close a file when we are finished with it ?

4. What function do we use to terminate a Python program? Why is this useful?

Week 6
1. What is the value of n in the code below

a. n = len([1, 2, 3])
b. n = len([“abc”, 2])
c. n = len([[1, 2], 3, 4, [4,5]])

2. What is the value of x in
s = “abcd 1234”
x = s[0]
x = s[2:4]
x = s[-1]

3. What is the list L in

 L = [x + 2 for x in range(7)]

4. What is the list L in

L = [1] * 4

5. What is the value of n in the code below

L = [1, 2, 3, 4,1, 3, 7, 9]

• n = L.count(3)
• n = L.count(9)
• n = L.count(8)

6. What is L after the sort

L = [24, 8, 36, 9, 2, 78, 99, 45]
L.sort()

7. What is the value of t, u, v, w:

s = “abcd”
t = s.lower()
u = s.upper()
v = s.replace(‘d’, ‘xxx’)
w = u.upper()

8. What is the value of t, u, v, w:

s = “blue, green, red, pink, purple”
t = s.split(‘,’)
s = ‘red orange green’

 13

v = s.split()
s = ‘tom.jones.joe.smith.bill’
w = s.split(‘.’)

9. What will the following code display

PI = 3.145926

 print(f"Pi = {PI:.2f}")
 print(f"Pi = {PI:.1f}")
 print(f"Pi = {PI:.3f}")
 print(f"Pi = {PI:.0f}")

Week 7

1. What values will the following functions return

a. def f1 (a):
 a = a + 1
 return

b. def f1 (s):
 a = s.lower(s)
 print(a)
 return

c. def newl (s):
 print(‘\n’)

2. Define a function sum3() to take 3 numbers as parameters and return the sum of the 3 numbers

3. Define a function mul3() to take 3 numbers as parameters and return the result of multiplying the

3 numbers (a * b * c)

4. Define a function lower_len() to take a string and return the number of lowercase letters in the
string e.g.

lower_case (‘AAbbCCDEF’) returns 2
lower_case (‘AACCDEF’) returns 0

5. Define a function print_error() to take a string and print it as an error message as follows:

 print_error(‘ Cannot open file ‘)

displays

********* ERROR ***********

Cannot open file
