
Lesson 3
Assignment and Variables

1

Giving a variable a value is called assignment. We can use assignment to give a
value to a variable in a program without input. For example, suppose we have a
variable called metres, to which we wish to give the value 12. In Python we
write:

metres = 12

This is usually read as 'metres is assigned the value 12’. We can use any value
instead of 12. Other examples of assigning values to variables are:

centimetres = 50
litres = 10.5
metres = 4
colour = 'red'
name = 'Joe Carthy'
pay_per_hour = 11.5

.

2

Example L3.1: Write a program to convert 5 metres to centimetres. A
simple Python program to do this is given below.

#convert1.py: converts metres to centimetres
#Author: Joe Carthy
#Date: 21/10/2023

metres = 5
centimetres = metres * 100
print('5 m is ', centimetres, 'cms',)

Executing this program produces as output:

5 m is 500 cms

Here we use the value of the variable metres to compute the value of the
variable centimetres.

.

3

We can assign a variable a value using other variables or by specifying the
value directly by specifying a number or a string.

gallons = 4
pints = gallons * 8
kilos = 4
metres = 18
cms = (kilos * 100000) + (metres * 100)
name = 'Joe'

In programs, values such as

4, 10.5, 'joe', name, 2 + 3, cms, gallons * 8

are called expressions

4

Arithmetic operators in Python

Python Operator Operation
+ Addition
 Subtraction
∗ Multiplication
/ [Floating-point] Division
∗∗ Power

Arithmetic expressions

pints = gallons * 8
cms = metres / 100
radius = 4
area_of_circle = 3.14 * radius **2

The integer numbers (eg 1, 2, 400, 200000) have type int

Numbers with a fractional part (eg 1.5, 2.444, 20.0) have type
float

6

Undefined variable name errors are often caused by
misspelling a variable name e.g.

metres = 25

print ('metres = ', metrs)

The variable metrs has not been defined

7

Variables must be defined before you use them
If a variable is ‘not defined” (not assigned a value), trying to use it
will generate an error.

So if you run the 1 line program:

print ('x = ', x)

You get an error because x has not been defined with an error
message such as: that below – the last line is the helpful one:

Traceback (most recent call last):
File "<string>", line 1, in <module>

NameError: name 'x' is not defined

Example L3.2: Converting metres to centimetres, version 2.

#convert2.py: converts metres to centimetres version 2
#Author: Joe Carthy
#Date: 21/10/2023

m = input('Enter number of metres: ')

metres = float (m)

centimetres = metres * 100

print(metres, 'metres is ', centimetres, 'cms',)

Executing this program produces as output:

Enter number of metres: 4
4.0 metres is 400.0 cms

.

9

Variable Types
The input function reads from the keyboard and returns a list of
characters i.e. a string.

Thus the variable m in the example above contains the string '4' and
not the number 4.

This is very confusing for beginners to programming.

A fundamental aspect of variables is that they have a type. The
type of a variable tells you what kind of data it stores.

In our programs we will use three types: int (whole numbers), float
(numbers with decimal point) and string (list of characters).

10

When you are working with numbers and wish to do arithmetic with
them (add, subtract, multiply and divide) then you must use either the
type int or float.

So it is crucial to understand the difference between the number 42
and the string '42' as used in the following code:

a = 42
b = a * 2

This results in b having the value 84.

The result is the integer number 84

In order to arithmetic with variables, the variables must be of type int or
type float

11

Now consider the code

x = '42' # x is type string
y = x * 2 # y is type string

This results in y having the value 4242 – a string of characters.

When you 'multiply' a string variable by a number n you get n copies of the
string e.g. the code:

x = 'bye'
y = x * 3

gives y the string value 'byebyebye'

12

You cannot do numeric calculations with a string even when the string
contains a number. This brings us back to Example L3.2 and the statements

m = input('Enter number of metres: ')

metres = float (m)

The variable m is of type string.

The float function converts the string m to a number with a decimal point
(also called a floating point or real number).

This means that metres now contains a number and we can do arithmetic
with it.

13

Example L3.2 revisited.

The output of L3.2 is 'crowded' in that there is no blank line before or after
the output or between the two lines of output.

Enter number of metres: 4
4.0 metres is 400.0 cms

This makes it hard to read the output. You can use the '\n' character in
strings to start new lines.

The version below addresses this issue by putting one '\n' in the input()
function and 3 in the print() function.

It also uses a shortcut to avoid using the string variable, m. It does this by
converting the string from input to a float in one statement:

metres = float (input('\nEnter number of metres: '))

14

Example L3.3: Converting metres to centimetres, version 4
convert4.py: converts metres to centimetres version 3
Outputs extra blank lines to make it easier to read the output

#Author: Joe Carthy
#Date: 21/10/2023

metres = float (input('\nEnter number of metres: '))

cms = metres * 100

print('\n', metres, 'metres is ', cms, ' centimetres\n\n')

When you run it, notice the extra blank lines

Enter number of metres: 3.5

3.5 metres is 350.0 centimetres

15

Example L3.4: Consider a simple calculator program. This program
prompts for two numbers, adds them and displays the sum.

calc.py: Calculator program to add 2 numbers
Author: Joe Carthy
Date: 01/10/2023

n1 = float(input('\nEnter first number: '))

n2 = float(input('\nEnter second number: '))

sum = n1 + n2

print('\n\nThe sum of', n1, 'and', n2, 'is', sum, '\n\n')

calc.py outputs:
Enter first number: 2.4

Enter second number: 5.76

The sum of 2.4 and 5.76 is 8.16

16

More on print function and displaying variables

It can get quite complicated when we output several strings and
variables using print as in the statement

print('\n\nThe sum of', n1, 'and', n2, 'is', sum, '\n\n')

There is a simpler way to display this message with print using f-strings.
We put the character f as the first item in print and we enclose any
variable we wish to display in {} brackets. print will display the value
of each variable in {}:

print(f'\n\nThe sum of {n1} and {n2} is {sum} \n\n')

produces identical output to the earlier print but is easier to use:

The sum of 2.4 and 5.76 is 8.16

17

Displaying a fixed number of decimal places

Python will display the result of numeric calculation to many decimal
places.

For example,

x = 19/3.768

print(f'x = {x}')

will output on my Mac computer:

x = 5.042462845010616

18

In most of calculations it is enough to display result with 2 decimal places.

We use an f-string to do this by following the variable name in {} with the
:.number of decimal pointsf

So if you wish to display a variables value to 2 decimal places you write
{x:.2f} to display x to 2 decimal points.

You can change the number from 2 to whatever you wish, to have that
number of places displayed after the decimal point.

For example

x = 19/3.768
print(f'x = {x:.2f}')

outputs

x = 5.04

19

Time to practice !

• Copy all of the examples from the slides above and get them to run
in your Python environment.

• Then complete the exercises from the Handbook and get them to
run.

• Finally carry out the assignments from the Handbook and get them
to run.

20

