
Python Programming Handbook

This is an informal introduction to Python programming. It introduces the beginner to some
fundamental programming concepts such as: input/output, variables and conditional
statements.

Overview
One point about programming must be clarified immediately: Anyone can learn to program
computers. However, you must be willing to spend some time studying and practising.

There are two aspects to programming that must be mastered. One concerns problem solving
and the other concerns the programming language, in this case Python, that is to be used.

You must learn how to solve problems. This is the core of programming. But you also must
learn how to express your problem solution in Python, so that it can be carried out on a
computer. These are two separate skills. You must try not to confuse them. It is difficult,
however, to explain one without reference to the other.

Problem Solving Skills
Computer programming is about problem solving. Every computer program solves some
particular problem, even programs to play games. It is impossible to write a computer
program unless you understand the problem you are being asked to solve. In programming,
you solve the problem, not the computer. A computer program describes to the computer
what it must do and how it is to be done. You give the computer instructions in the form of a
program, telling it what to do and how to do it. The set of instructions required to solve a
problem is a computer program

The term algorithm is used to describe the set of steps that solve a problem. An algorithm
may be expressed in English or in a programming language. A computer program must be
expressed in a programming language. In programming, we first develop an algorithm for
the problem at hand, and then we translate this algorithm to a Python program, so that it can
be executed (carried out, ran) on a computer.

Sometimes we make mistakes in telling the computer what to do. We overlook part of the
problem or do not understand what to do ourselves. In these cases, the computer program
will not produce the “right answer”. It is, however, still solving a problem. It is simply not the
problem we wanted to solve. For this reason, it is important to thoroughly check that your
programs do indeed solve the problem you intended.

Lesson 1: Output

In this lesson we learn how to perform output – to display messages on your screen.

All program code will be dispalyed using the Courier font in this text.

Output is the term used to describe information that the computer displays (writes) on your
screen or stores (writes) on a disk drive.

The commonest form of output is that of displaying a message on your screen. In Python, we
use the print statement to display output on the screen.

The following print statement will display the message:

 My name is Beth. This is my first program

on the screen.

 print(“My name is Beth. This is my first program“)

This is a single Python program statement. A statement is a command to the computer to
carry out an action. So our fisrt Python program is composed of this single statement. To
execute this program, it is stored in a file which we call print1.py. which contains one
line:

 print(“My name is Beth. This is my first program“)

To execute the program we use the command python3 which runs the program:

% python3 print1.py
My name is Beth. This is my first program

You may also run Python programs using an IDE which will be discussed later.

We call the message that print displayed a string.

A string is a list of characters in quotes. You may put any characters that you wish in a
string. Strings can also be represented by characters inside either single or double quotes:

“My name is Beth.“
‘My name is Beth. ‘

You can display strings using a print:

 print(“Hello ! Goodbye!“)
 print(“rubbish 123 rubbish xyz @£$%^&*“)

Statements

When people communicate in any language, they use sentences. When you write down a
sentence in English, you have a full stop at the end. This tells us where the sentence ends.
You call the full stop a sentence terminator i.e. it indicates the end of a sentence.

Similarly, when you write programs you also use sentences to communicate with the
computer. In programs, sentences are called statements. They also have a terminator. Python
statements use the end of line to terminate a statement. The 2 statements below are
terminated by the newline character.

 print(“Hello ! Goodbye!“)
 print(“rubbish 123 rubbish xyz @£$%^&*“)

After you entered) on the first line, you pressed the Return key on the keyboard to start a
new line – we call this the newline character. Similarly after you entered) on the second line,
you also pressed Return thus starting a new line.

If you make a mistake entering a statement, a computer will not understand the statement
and it will display an error message. This often caused by a spelling error or a missing bracket
or quotation mark. For example, in a programming, just as in English, you must always have
the correct number of quotation marks and brackets.

Left brackets such as (, { and [are called opening brackets.

The quotation marks at the start of a phrase:"(double) and ' (single) are called opening
quotes.

Right brackets such as) , } and] are called closing brackets and quotation marks at the end of
a phrase are called closing quotes.

A simple rule is that for every opening bracket or quotation mark you must have a
corresponding closing bracket or quotation mark.

Example 1.1: Matching brackets and quotes:

“Hello“
(age > 10)
'x'
list[10]

Breaking this rule causes a syntax error. The following are examples of syntax errors:

age > 10)
‘x
list[10
prin(“Hello ! Goodbye!“)

The last error is due to misspelling print

What to do when an error occurs
When a syntax error occurs, you must work out what mistake(s) you have made. This means
checking the statements of your program and seeing where the syntax is incorrect. You then
edit your program to correct the mistake. When you have corrected your program, it can be
executed. To execute a program or to run a program means that the computer carries out
the instructions making up the program.

A Python program is made up of a group of one or more statements. These statements allow
us to control the computer. Using them, we can display information on the screen, read
information from the keyboard and process information in a variety of ways.

We can classify statements as:

Input/Output (I/O) statements (e.g. display information on screen)
Variable manipulation statements (e.g. to do arithmetic) and
Conditional statements (e.g. to make decisions)

Lesson 1 Exercises – try these in your own time

1. What	is	the	output	of	the	following	print	statement?		

print(“Have a great day!“)

a.	“Have	a	great	day!”		

b.	“Have	a	great	day”		

c.	Have	a	great	day!		

d.	‘Have	a	great	day!’	

2. What	is	the	output	of	the	following	statements?	
print("Hi there!")
print("How are you doing?")
a. Hi	there!	How	are	you	doing?		
b. How	are	you	doing?	Hi	there!		
c. "Hi	there!"		

	 								How	are	you	doing?"		
d. Hi	there!		
							How	are	you	doing?		

3. Write	a	program	that	prints	a	message	saying		

I	love	Python!		

4. Write	a	program	that	prints	a	message	saying	your	name	and	your	age,	e.g.		

My	name	is	Colin.	I	am	20	years	old!		

5. Write	a	program	to	display	the	message	"Welcome	to	Python"	three	times,	on	
separate	lines	using	three print	statements.		

	

6. Write	a	program	to	display	the	message	"Python	is	awesome!"	two	times,	on	
separate	lines,	using	only	one	print	statement	and	\n		
	

7. What	are	the	syntax	errors	in	the	following	statements:	
	
print(“Hello ! Goodbye!)
print(Hello ! Goodbye!“)
print(“Hello ! Goodbye!“
print “Hello ! Goodbye!“)
prlnt(“Hello ! Goodbye!“)

Lesson 1 Assignments – you email these to UCD

1. Write	a	program	that	prints	out	your	favourite	food,	followed	by	a	blank	line,	
followed	by	your	favourite	colour,	followed	by	a	blank	line,	followed	by	your	
favourite	animal.	Use	either	the		\n		character	in	one	print statement	or	use		
separate	print	statements.		
	

2. Print	a	square	made	up	of	4	@	characters	per	line	using	a	single	print	
statement.	
	
@@@@@	
@@@@@	
@@@@@	
@@@@@	

Lesson 2: Input and Variables

Input is the term used to describe the transfer of information from the keyboard (or a disk)
to the computer. We can use the word read for input e.g read information from the
keyboard. The question arises – where do we store the information we read in. This
introduces the concept of variables.

A variable is a container for information.

This means that we can store information in a variable. It is called a variable because at any
time we can change (vary) the information it stores.

So when we input information, we store it in a one or more variables. We give each variable
a unique name, which we use to identify it. The following are examples of variable names
we could use in a Python program:

 colour
 my_age
 pension_age

name
taxcode
tax_rate
temperature
name
hourly_pay

Fundamental principle of writing clear programs

Choose meaningful names for variables

Using meaningful variable names it makes your programs easier to understand. For
example, if you are writing a program which deals with pension ages then you could use any
of the following variable names to store the pension age but which one makes is easiest to
understand:
 pension_age

pa
p
x
pna

The variable name pension_age is the obvious choice. When you see this name you
automatically know what it the variable is being used for. If you use a name like p or x
then the name gives you no idea about what the variable is being used for.

We use the Python input statement to read information from the keyboard, into a
variable.

Example 1: Write a program to ask the user to enter their favourite colour. The program
reads this colour that the user types on the keyboard and displays a message followed by
the colour entered by the user.

favourite_colour = input(“Enter your favourite colour: “)

 print(favourite_colour)

If we execute the program the following appears on the screen (the bolded text is that
entered by the user on the keyboard. We will use this convention throughout the text).

Enter your favourite colour: blue
blue

The variable favourite_colour is used to store the characters that the user types on
the keyboard that is, it will store a list of characters.

When you use a variable name with print it will display the value of the variable i.e. the
string blue in the example above.

The input() statement does two tasks: it displays the string in quotes and then reads text
from the keyboard, (for example the word blue may be entered), and it places this text in
the variable favourite_colour.

We have seen that the print statement is used to display output on the screen. It can be
used to display strings and numbers in the same print statement.

Example 2: Write a program to ask the user to enter their favourite colour. The program
reads this colour that the user types on the keyboard and displays a message followed by
the colour entered by the user.

favourite_colour = input(“Enter your favourite colour: “)

 print(“Yuk ! I hate “, favourite_colour)

If we execute the program the following appears on the screen:

Enter your favourite colour: blue
Yuk ! I hate blue

The statement
print(“Yuk ! I hate “, favourite_colour)

instructs the computer to display the message Yuk ! I hate followed by the value of the
variable favourite_colour i.e. blue in this example.

We use the expression “the value of a variable” to mean “the value contained in a variable”.

We take the phrase “the value of favourite_colour is blue” to mean “the value
contained in the variable favourite_colour is blue”. We will use the shorter form
from now on.

Make sure you understand the difference between:

 print(“favourite_colour“)
and
 print(favourite_colour)

In the first case, the word (string) favourite_colour appears on the screen.

In the second case, the value of a variable called favourite_colour is displayed
which could be anything, for example the word blue or whatever value the user has given
the variable like red, pink and orange. You can store many words in a string variable.

Rules for Variable Names

Python and every programming language, has rules on how you name variables:

• A variable name can only contain the following:
• letters (lowercase and uppercase, ie a–z and A–Z)
• digits (0–9)
• the underscore character “_”

• A variable name cannot start with a digit

• Variable names in Python are case-sensitive – it distinguishes between uppercase

and lower case letters so that colour and Colour are different variables

• There are a number of reserved words or keywords that have built-in meanings in
Python and cannot be used as variable names (e.g. if, return, def, del,
break, for, in, else, while, import)

The following are legal or valid variable names in Python:

Colour, name, firstname, surname, class1, class 602,
first_name, second_name, address_line1.

The use of the underscore “_” character is very useful in creating meaningful names made
up of 2 or more words.

Do not confuse the underscore character with the minus sign “-“. The minus sign (or any
other symbol) cannot be used in a variable name. thus first-name is not a valid variable
name.

Comments

In a Python program, any text after # is called a comment and is ignored by Python. This
text is there to help explain to someone reading the program, what the program does and
how the program works. Comments are an important component of programs. This is
because when you read your programs some time after writing them, you may find them
difficult to understand, if you have not included comments to explain what you were doing.
They are even more important if someone else will have to read your programs e.g. your
tutor who is going to grade them!

It is a useful idea to start all programs with comments which give the name of the file
containing the program, the purpose of the program, the authors name and the date on
which the program was written, as the first comments in any program. Example 2 could be
written as:

 # colour.py: Prompt user to enter colour and display a message
 # Author: Joe Carthy
 # Date: Oct 20 2022

favourite_colour = input(“Enter your favourite colour: “)

 print(“Yuk ! I hate “, favourite_colour)

Lesson 2 Exercises

1. Valid or invalid variable names

a. Is the variable name TotalMarks correct?
b. Is the variable name number-of-students correct?
c. Is the variable name firstName correct?
d. Is the variable name myVar1 correct?
e. Is the variable name customerName correct?
f. Is the variable name productPrice correct?
g. Is the variable name 3rdStudent correct?
h. Is the variable name isAvailable? correct?
i. Is the variable name total-sales correct?
j. Is the variable name customer_email correct?

3. Write	a	program	that	asks	the	user	for	their	name	using	input.	Store	the	name	

in	a	variable	and	display	a	personalized	greeting	using	the	variable.		
4. What	is	the	output,	if	any,	of	the	following	program:	

	
print(‘hello\n’)
print(‘bye bye\n’)

5. Write	a	program	that	prompts	the	user	to	enter	their	favourite	color	and	
favourite	animal	using	the	input.	Store	these	values	in	separate	variables	and	
display	them	in	a	sentence	:

My favourite colour is … and my favourite animal is ..

Lesson 2 Assignments

i. Write	a	program	that	prompts	the	user	to	enter	their	favourite	number	using	
input.	Store	the	number	in	a	variable	and	print	a	message	that	includes	the	user's	
favourite	number.	

ii. Create	a	program	that	simulates	a	hospital	registration	system.	Prompt	the	user	to	

enter	the	following	information:	

Name	
Surname	
Age	
Height	(in	cm)		

Store	each	piece	of	information	in	a	separate	variable	with	an	appropriate	name.		

Finally,	print	the	information	in	the	following	format:		

Name:	Joe		
Surname:	Carthy]	
Age:	100	
Height:	180	

Appendix 1: Solutions

Lesson 1 Solutions

1.	What	is	the	output	of	the	following	print	statement?		

print(“Have a great day!“)

c.	Have	a	great	day!		

	

2. What	is	the	output	of	the	following	statements?	
print("Hi there!")
print("How are you doing?")

Hi	there!		
							How	are	you	doing?		

3. Write	a	program	that	prints	a	message	saying		

I	love	Python!		

print("I love Python! ")

	

4. Write	a	program	that	prints	a	message	saying	your	name	and	your	age,	
e.g.		

My	name	is	Colin.	I	am	20	years	old!		

print("My name is Colin. I am 20 years old! ")

	

5. Write	a	program	to	display	the	message	"Welcome	to	Python"	three	times,	on	
separate	lines	using	three print	statements.		

print("Welcome to Python! ")

print("Welcome to Python! ")

print("Welcome to Python! ")

	

6. Write	a	program	to	display	the	message	"Python	is	awesome!"	two	times,	
on	separate	lines,	using	only	one	print	statement	and	\n		

	

print("Python is awesome!\n Python is awesome!\n ")

	
7. What	are	the	syntax	errors	in	the	following	statements:	

	
print(“Hello ! Goodbye!)- missing closing “
print(Hello ! Goodbye!“) – missing opening “
print(“Hello ! Goodbye!“ - missing closing)
print “Hello ! Goodbye!“). – missing opening (
prlnt(“Hello ! Goodbye!“) – misspelt print

Lesson 2 Solutions

1. Valid or invalid variable names
a. Is the variable name TotalMarks correct - Yes
b. Is the variable name number-of-students correct? NO – cannot use –in variable name
c. Is the variable name firstName correct? Yes
d. Is the variable name myVar1 correct? Yes
e. Is the variable name customerName correct? Yes
f. Is the variable name productPrice correct? Yes
g. Is the variable name 3rdStudent correct? NO – cannot start with a digit
h. Is the variable name isAvailable? correct? Yes
i. Is the variable name total-sales correct? NO – cannot use –in variable name
j. Is the variable name customer_email correct? Yes

2. Write	a	program	that	asks	the	user	for	their	name	using	input.	Store	the	name	
in	a	variable	and	display	a	personalized	greeting	using	the	variable.		

	
name = input(“Enter your name: “)

 print(“Hello, how are you “, name)
	
	

3. What	is	the	output,	if	any,	of	the	following	program:	
	

print(‘hello\n’)
print(‘bye bye\n’)

No	output	because	any	text	following	#	is	treated	as	a	comment	and	ignored	by	
Python	

	

4. Write	a	program	that	prompts	the	user	to	enter	their	favourite	colour	and	
favourite	animal	using	the	input.	Store	these	values	in	separate	variables	and	
display	them	in	a	sentence	:

favourite_colour = input(“Enter your favourite colour: “)
favourite_animal = input(“Enter your favourite animal: “)

 print(“My favourite colour is “, favourite_colour, “and my
favourite animal is”, favourite_animal)

