
Python Programming Handbook

This is an informal introduction to Python programming. It introduces the beginner to some
fundamental programming concepts such as: input/output, variables and conditional
statements.

Overview
One point about programming must be clarified immediately: Anyone can learn to program
computers. However, you must be willing to spend some time studying and practising.

There are two aspects to programming that must be mastered. One concerns problem solving
and the other concerns the programming language, in this case Python, that is to be used.

You must learn how to solve problems. This is the core of programming. But you also must
learn how to express your problem solution in Python, so that it can be carried out on a
computer. These are two separate skills. You must try not to confuse them. It is difficult,
however, to explain one without reference to the other.

Problem Solving Skills
Computer programming is about problem solving. Every computer program solves some
particular problem, even programs to play games. It is impossible to write a computer
program unless you understand the problem you are being asked to solve. In programming,
you solve the problem, not the computer. A computer program describes to the computer
what it must do and how it is to be done. You give the computer instructions in the form of a
program, telling it what to do and how to do it. The set of instructions required to solve a
problem is a computer program

The term algorithm is used to describe the set of steps that solve a problem. An algorithm
may be expressed in English or in a programming language. A computer program must be
expressed in a programming language. In programming, we first develop an algorithm for
the problem at hand, and then we translate this algorithm to a Python program, so that it can
be executed (carried out, ran) on a computer.

Sometimes we make mistakes in telling the computer what to do. We overlook part of the
problem or do not understand what to do ourselves. In these cases, the computer program
will not produce the 'right answer'. It is, however, still solving a problem. It is simply not the
problem we wanted to solve. For this reason, it is important to thoroughly check that your
programs do indeed solve the problem you intended.

Lesson 1: Output

In this lesson we learn how to perform output – to display messages on your screen.

All program code will be displayed using the Courier font in this text.

Output is the term used to describe information that the computer displays (writes) on your
screen or stores (writes) on a disk drive.

The commonest form of output is that of displaying a message on your screen. In Python, we
use the print statement to display output on the screen.

The following print statement will display the message:

 My name is Beth. This is my first program

on the screen.

 print('My name is Beth. This is my first program')

This is a single Python program statement. A statement is a command to the computer to
carry out an action. So our first Python program is composed of this single statement. To
execute this program, it is stored in a file which we call print1.py. which contains one
line:

 print('My name is Beth. This is my first program')

To execute the program we use the command python3 which runs the program:

% python3 print1.py
My name is Beth. This is my first program

You may also run Python programs using an IDE which will be discussed later.

We call the message that print displayed a string.

A string is a list of characters in quotes. You may put any characters that you wish in a
string. Strings can be represented by characters inside either single or double quotes:

'My name is Beth.'
"My name is Beth."

You can display strings using a print:

 print('Hello ! Goodbye!')
 print('rubbish 123 rubbish xyz @£$%^&*')

Statements

When people communicate in any language, they use sentences. When you write down a
sentence in English, you have a full stop at the end. This tells us where the sentence ends.
You call the full stop a sentence terminator i.e. it indicates the end of a sentence.

Similarly, when you write programs you also use sentences to communicate with the
computer. In programs, sentences are called statements. They also have a terminator. Python
statements use the end of line to terminate a statement. The 2 statements below are
terminated by the newline character.

 print('Hello ! Goodbye!')
 print('rubbish 123 rubbish xyz @£$%^&*')

After you entered) on the first line, you pressed the Return key on the keyboard to start a
new line – we call this the newline character. Similarly after you entered) on the second line,
you also pressed Return thus starting a new line.

If you make a mistake entering a statement, a computer will not understand the statement
and it will display an error message. This often caused by a spelling error or a missing bracket
or quotation mark. For example, in a programming, just as in English, you must always have
the correct number of quotation marks and brackets.

Left brackets such as (, { and [are called opening brackets.

The quotation marks at the start of a phrase: " (double) and ' (single) are called opening
quotes.

Right brackets such as) , } and] are called closing brackets and quotation marks at the end of
a phrase are called closing quotes.

A simple rule is that for every opening bracket or quotation mark you must have a
corresponding closing bracket or quotation mark.

Example 1.1: Matching brackets and quotes:

'Hello'
(age > 10)
'x'
list[10]

Breaking this rule causes a syntax error. The following are examples of syntax errors:

age > 10)
'x
list[10
prin('Hello ! Goodbye!')

The last error is due to misspelling print

What to do when an error occurs
When a syntax error occurs, you must work out what mistake(s) you have made. This means
checking the statements of your program and seeing where the syntax is incorrect. You then
edit your program to correct the mistake. When you have corrected your program, it can be
executed. To execute a program or to run a program means that the computer carries out
the instructions making up the program.

A Python program is made up of a group of one or more statements. These statements allow
us to control the computer. Using them, we can display information on the screen, read
information from the keyboard and process information in a variety of ways.

We can classify statements as:

Input/Output (I/O) statements (e.g. display information on screen)
Variable manipulation statements (e.g. to do arithmetic) and
Conditional statements (e.g. to make decisions)

Lesson 1 Exercises – try these in your own time

1. What	is	the	output	of	the	following	print	statement?		

print('Have a great day!')

a.	'Have	a	great	day!'		

b.	'Have	a	great	day'		

c.	Have	a	great	day!		

d.	'Have	a	great	day!'	

2. What	is	the	output	of	the	following	statements?	
print('Hi there!')
print('How are you doing?')
a. Hi	there!	How	are	you	doing?		
b. How	are	you	doing?	Hi	there!		
c. 'Hi	there!'		

	 								How	are	you	doing?'		
d. Hi	there!		
							How	are	you	doing?		

3. Write	a	program	that	prints	a	message	saying		

I	love	Python!		

4. Write	a	program	that	prints	a	message	saying	your	name	and	your	age,	e.g.		

My	name	is	Colin.	I	am	20	years	old!		

5. Write	a	program	to	display	the	message	'Welcome	to	Python'	three	times,	on	
separate	lines	using	three print	statements.		

	

6. Write	a	program	to	display	the	message	'Python	is	awesome!'	two	times,	on	
separate	lines,	using	only	one	print	statement	and	\n		
	

7. What	are	the	syntax	errors	in	the	following	statements:	
	
print('Hello ! Goodbye!)
print(Hello ! Goodbye!')
print('Hello ! Goodbye!'
print 'Hello ! Goodbye!')
prlnt('Hello ! Goodbye!')

Lesson 1 Assignments – you email these to UCD

1. Write	a	program	that	prints	out	your	favourite	food,	followed	by	a	blank	line,	
followed	by	your	favourite	colour,	followed	by	a	blank	line,	followed	by	your	
favourite	animal.	Use	either	the		\n		character	in	one	print statement	or	use		
separate	print	statements.		
	

2. Print	a	square	made	up	of	4	@	characters	per	line	using	a	single	print	
statement.	
	
@@@@	
@@@@	
@@@@	
@@@@	

Lesson 2: Input and Variables

Input is the term used to describe the transfer of information from the keyboard (or a disk)
to the computer. We can use the word read for input e.g read information from the
keyboard. The question arises – where do we store the information we read in. This
introduces the concept of variables.

A variable is a container for information.

This means that we can store information in a variable. It is called a variable because at any
time we can change (vary) the information it stores.

So when we input information, we store it in a one or more variables. We give each variable
a unique name, which we use to identify it. The following are examples of variable names
we could use in a Python program:

 colour
 my_age
 pension_age

name
taxcode
tax_rate
temperature
name
hourly_pay

Fundamental principle of writing clear programs

Choose meaningful names for variables

Using meaningful variable names it makes your programs easier to understand. For
example, if you are writing a program which deals with pension ages then you could use any
of the following variable names to store the pension age but which one makes is easiest to
understand:
 pension_age

pa
p
x
pna

The variable name pension_age is the obvious choice. When you see this name you
automatically know what it the variable is being used for. If you use a name like p or x
then the name gives you no idea about what the variable is being used for.

We use the Python input statement to read information from the keyboard, into a
variable.

Example 1: Write a program to ask the user to enter their favourite colour. The program
reads this colour that the user types on the keyboard and displays a message followed by
the colour entered by the user.

favourite_colour = input('Enter your favourite colour: ')

 print(favourite_colour)

If we execute the program the following appears on the screen (the bolded text is that
entered by the user on the keyboard. We will use this convention throughout the text).

Enter your favourite colour: blue
blue

The variable favourite_colour is used to store the characters that the user types on
the keyboard that is, it will store a list of characters.

When you use a variable name with print it will display the value of the variable i.e. the
string blue in the example above.

The input() statement does two tasks: it displays the string in quotes and then reads text
from the keyboard, (for example the word blue may be entered), and it places this text in
the variable favourite_colour.

We have seen that the print statement is used to display output on the screen. It can be
used to display strings and numbers in the same print statement.

Example 2: Write a program to ask the user to enter their favourite colour. The program
reads this colour that the user types on the keyboard and displays a message followed by
the colour entered by the user.

favourite_colour = input('Enter your favourite colour: ')

 print('Yuk ! I hate ', favourite_colour)

If we execute the program the following appears on the screen:

Enter your favourite colour: blue
Yuk ! I hate blue

The statement
print('Yuk ! I hate ', favourite_colour)

instructs the computer to display the message Yuk ! I hate followed by the value of the
variable favourite_colour i.e. blue in this example.

We use the expression 'the value of a variable' to mean 'the value contained in a variable'.

We take the phrase 'the value of favourite_colour is blue' to mean 'the value
contained in the variable favourite_colour is blue'. We will use the shorter form
from now on.

Make sure you understand the difference between:

 print('favourite_colour')
and
 print(favourite_colour)

In the first case, the word (string) favourite_colour appears on the screen.

In the second case, the value of a variable called favourite_colour is displayed
which could be anything, for example the word blue or whatever value the user has given
the variable like red, pink and orange. You can store many words in a string variable.

Rules for Variable Names

Python and every programming language, has rules on how you name variables:

• A variable name can only contain the following:
• letters (lowercase and uppercase, ie a–z and A–Z)
• digits (0–9)
• the underscore character '_'

• A variable name cannot start with a digit

• Variable names in Python are case-sensitive – it distinguishes between uppercase

and lower case letters so that colour and Colour are different variables

• There are a number of reserved words or keywords that have built-in meanings in
Python and cannot be used as variable names (e.g. if, return, def, del,
break, for, in, else, while, import)

The following are legal or valid variable names in Python:

Colour, name, firstname, surname, class1, class 602,
first_name, second_name, address_line1.

The use of the underscore '_' character is very useful in creating meaningful names made up
of 2 or more words.

Do not confuse the underscore character with the minus sign '-'. The minus sign (or any
other symbol) cannot be used in a variable name. thus first-name is not a valid variable
name.

Comments

In a Python program, any text after # is called a comment and is ignored by Python. This
text is there to help explain to someone reading the program, what the program does and
how the program works. Comments are an important component of programs. This is
because when you read your programs some time after writing them, you may find them
difficult to understand, if you have not included comments to explain what you were doing.
They are even more important if someone else will have to read your programs e.g. your
tutor who is going to grade them!

It is a useful idea to start all programs with comments which give the name of the file
containing the program, the purpose of the program, the authors name and the date on
which the program was written, as the first comments in any program. Example 2 could be
written as:

 # colour.py: Prompt user to enter colour and display a message
 # Author: Joe Carthy
 # Date: Oct 20 2022

favourite_colour = input('Enter your favourite colour: ')

 print('Yuk ! I hate ', favourite_colour)

Lesson 2 Exercises

1. Valid or invalid variable names

a. Is the variable name TotalMarks correct?
b. Is the variable name number-of-students correct?
c. Is the variable name firstName correct?
d. Is the variable name myVar1 correct?
e. Is the variable name customerName correct?
f. Is the variable name productPrice correct?
g. Is the variable name 3rdStudent correct?
h. Is the variable name isAvailable? correct?
i. Is the variable name total-sales correct?
j. Is the variable name customer_email correct?

3. Write	a	program	that	asks	the	user	for	their	name	using	input.	Store	the	name	

in	a	variable	and	display	a	personalized	greeting	using	the	variable.		
	

4. What	is	the	output,	if	any,	of	the	following	program:	
	

print('hello\n')
print('bye bye\n')

5. Write	a	program	that	prompts	the	user	to	enter	their	favourite	colour	and	

favourite	animal	using	the	input.	Store	these	values	in	separate	variables	and	
display	them	in	a	sentence	:

My favourite colour is … and my favourite animal is ..

Lesson 2 Assignments

i. Write	a	program	that	prompts	the	user	to	enter	their	favourite	number	using	
input.	Store	the	number	in	a	variable	and	print	a	message	that	includes	the	user's	
favourite	number.	

ii. Create	a	program	that	simulates	a	hospital	registration	system.	Prompt	the	user	to	

enter	the	following	information:	

Name	
Surname	
Age	
Height	(in	cm)		

Store	each	piece	of	information	in	a	separate	variable	with	an	appropriate	name.	
Finally,	print	the	information	in	the	following	format:		

Name:	Joe		
Surname:	Carthy	
Age:	100	
Height:	180	

Lesson 3: Variables and Assignment

In Lesson 2 we used input to give a variable its value.. Giving a variable a value is called
assignment. We can use assignment to give a value to a variable directly in a program
without input. We may give the variable a value or compute a value based on the values of
other variables. For example, suppose we have a variable called metres, to which we wish
to give the value 12. In Python we write:

 metres = 12

This is usually read as 'metres is assigned the value 12'. Of course, we could use any value
instead of 12. Other examples of assigning values to variables are:

 centimetres = 50
 litres = 10
 metres = 4

colour = 'red'
name = 'Joe Carthy'
pay_per_hour = 10.5

Example L3.1: Write a program to convert 5 metres to centimetres. A simple Python
program to do this is given below.

#convert1.py: converts metres to centimetres
#Author: Joe Carthy
#Date: 21/10/2023

metres = 5
centimetres = metres * 100
print('5 m is ', centimetres, 'cms',)

Executing this program produces as output:

5 m is 500 cms

Here we use the value of the variable metres to compute the value of the variable
centimetres.

Other examples of such an assignment are:

 gallons = 4

pints = gallons * 8
 kilometres = 4
 metres = 18
 cms = (kilometres * 100000) + (metres * 100)

The program to convert metres to centimetres as presented in Example L3.1 is very limited
in that it always produces the same answer. It always converts 5 metres to centimetres. A

more useful version would prompt the user to enter the number of metres to be converted
and display the result:

Example L3.2: Converting metres to centimetres, version 2.

#convert2.py: converts metres to centimetres version 2
#Author: Joe Carthy
#Date: 21/10/2023

m = input('Enter number of metres: ')

metres = float (m)

centimetres = metres * 100

print(metres, 'metres is ', centimetres, 'cms',)

Executing this program produces as output:

Enter number of metres: 4
4.0 metres is 400.0 cms

Variable Types
Important note: The input function reads from the keyboard and returns a list of
characters i.e. a string. Thus the variable m in the example above contains the string '4' and
not the number 4.

This is very confusing for beginners to programming. A fundamental aspect of variables is
that they have a type. The type of a variable tells you what kind of data it stores.

In our programs we will use three types: int (whole numbers), float (numbers with decimal
point) and string (list of characters).

When you are working with numbers and wish to do arithmetic with them (add, subtract,
multiply and divide) then you must use either the type int or float.

So it is crucial to understand the difference between the number 42 and the string '42' as
used in the following:

a = 42
b = a * 2

This results in b having the value 84. A and b are of type int in this case.

x = '42' # x is type string
y = x * 2 # y is type string

This results in y having the value 4242 – string of characters.

When you 'multiply' a string variable by n you get n copies of the string e.g.

The code:

x = 'bye'
y = x * 3

gives y the string value 'byebyebye'

This brings us back to Example L3.2 and the statements

m = input('Enter number of metres: ')

metres = float (m)

The variable m is of type string.

The float function converts the string m to a number with a decimal point (real number).

This means that metres now contains a number which we can do arithmetic with.

The output of L3.2 is 'crowded' in that there is no blank line before or after the output or
between the two lines of output. This makes it hard to read the output. You can use the '\n'
character in strings to start new lines.

The version below fixes this issue by putting one '\n' in the input() function and 3 in the
print() function.

It also uses a shortcut to avoid using a string variable, m, in the previous examples. It does
this by converting the string from input to a float in one statement:

 metres = float (input('\nEnter number of metres: '))

Example L3.3: Converting metres to centimetres, version 4

convert4.py: converts metres to centimetres version 3
Outputs extra blank lines to make it easier to read the output

#Author: Joe Carthy
#Date: 21/10/2022

metres = float (input('\nEnter number of metres: '))

centimetres = metres * 100

print('\n', metres, 'metres is ', centimetres, ' centimetres\n\n')

When you run it, notice the extra blank lines

Enter number of metres: 3.5

3.5 metres is 350.0 centimetres

Some Fun making the computer beep!

When you use '\a' (called the BEL character) in print, the computer makes a beep sound –
it does not display anything. So the program below simply plays 3 beeps.

beep.py: Just for fun - beep 3 times !!

print('\a \a \a')

Example L3.4: As another example of the use of I/O and variables consider a simple
calculator program. This program prompts for two numbers, adds them and displays the
sum.

calc.py: Calculator program to add 2 numbers
Author: Joe Carthy
Date: 01/10/2023

number1 = float(input('\nEnter first number: '))

number2 = float(input('\nEnter second number: '))

sum = number1 + number2

print('\n\nThe sum of', number1, 'and', number2, 'is', sum, '\n\n')

calc.py outputs:

Enter first number: 2.4

Enter second number: 5.76

The sum of 2.4 and 5.76 is 8.16

Variables must be defined before you use them other statements

Variables must be defined before you use them – you must give them a value.

If a variable is 'not defined' (not assigned a value), trying to use it will generate an error.

So if you run the 1 line program:

 print ('x = ', x)

An error is displayed because the variable x has not been defined. The error
message may not be very user friendly such as: that below – the last line is the helpful one:

 Traceback (most recent call last):
 File "<string>", line 1, in <module>
 NameError: name 'x' is not defined

The most common reason for this error is mis-spelling the name of.variable as in the code
below

 metres = 5
 cms = metres / 100
 print (f'{metrs} = {cms} centimetres')

Here we have misspelled metres in the print statement and an error is displayed:

 Traceback (most recent call last):
 File "<string>", line 3, in <module>
 NameError: name 'metrs' is not defined

More on print() function and displaying variables

It can get quite complicated when we output strings and variables using print as in the
statement

print('\n\nThe sum of', number1, 'and', number2, 'is', sum, '\n\n')

There is a simpler way to display this message with print using f-strings. We put the
character f as the first item in print:

print(f'\n\nThe sum of {number1} and {number2} is {sum} \n\n')

which produces identical output to the earlier print

The sum of 2.4 and 5.76 is 8.16

When using an f-string, we enclose any variable we wish to display in {} brackets.

print will display the value of each variable in {}.

This avoids having to have separate strings in quotes, separated by commas, as in the earlier
version of print.

As another example consider the following variables and how we want to display them:

Name = ‘Joe Bloggs’
rate = 10.00
num_hours = 40
pay = rate * num_hours

Without using an f-string we display using:

print('Pay for ', name, 'at ', rate, 'per hour is', pay)

which outputs

Pay for Joe Bloggs at 10.0 per hour is 400.0

We can display the same output with a simpler print using f-strings:

print(f'Pay for {name} at {rate} per hour is {pay}')

displays the same output as the first print() above.

Pay for Joe Bloggs at 10.00 per hour is 400.00

Displaying a fixed number of decimal places

Python will display the result of numeric calculation to many decimal places.

For example,

x = 19/3.768

print(f'x = {x}')

will output on my Mac computer:

x = 5.042462845010616

In most of our calculations it is enough to display result with 2 decimal places.

We use an f-string to do this by following the variable in {} with
 :.number of decimal pointsf you wish to output e.g. {x:.2f} specifies to display
x to 2 decimal places.

You can change the number from 2 to whatever you wish, to have that
number of places displayed after the decimal point.

To print x to 2 decimal points

x = 19/3.768

print(f'x = {x:.2f}')

outputs

x = 5.04

Lesson 3 Exercises

1. What is the data type of each variable?
a. What is the data type of the variable 'age'? age = 25
b. What is the data type of the variable 'name'? name = 'John Doe'
c. What is the data type of the variable 'price'? price = 9.99
d. What is the data type of the variable 'quantity'? quantity = 10
e. What is the data type of the variable 'message'? message = 'Hello'
f. What is the data type of the variable 'discount'? discount = 0.2

2. Write a program to convert 10 dollars to kyats using an exchange rate of 1 dollar =
2100 kyats.

10 dollars = 21000 kyats

Use print with f-strings in all of the following programs

3. Write a program that takes a single length (a float) and calculates the following:
• The area of a square with side of that length. (length * length)
• The volume of a cube with side of that length. (length ** 3)
• The area of a circle with diameter of that length (3.14 * (length/2)**2))

Enter length: 4

Area of square: 16.0
Volume of cube: 64.0
Area of circle: 12.56

4. Write a program that takes an amount (a float), and calculates the tax due according
to a tax rate of 20%

Enter amount for tax at 20%: 200.0

Tax: 40.00

5. Write a program to simulate a cash register for a single purchase. The program reads
the unit cost of an item and the numbers of items purchased. The program displays
the total cost for that number of units:

Enter unit cost: 5
Enter number of units: 6

Total cost of 6 units: 30.00

6. Modify the programs 3, 4 and 5 above to display the output to

one decimal point e.g.

Area of circle: 12.5

Lesson 3 Assignments
Use print with f-strings in all of the following programs

1. Ask	the	user	to	enter	a	temperature	in	Celsius	and	convert	it	to	Fahrenheit	using	
the	formula:		

Fahrenheit	=	(Celsius	*	1.8)	+	32.	

Print	the	converted	temperature	in	Fahrenheit.		

Enter temperature in Celsius: 100

100 degrees Celsius = 212.0 degrees Fahrenheit

	

2. Convert	dollars	to	kyat		as	follows:	
a. Display		'Dollar	to	Kyat	conversion	program'	
b. Ask	the	user	to	enter	an	amount	in	dollars.		
c. Ask	the	user	to	enter	the	kyat	exchange	rate	for	dollars.		
d. Calculate	kyat	amount	by	multiplying	the	dollar	amount	by	the	exchange	

rate.		
e. Print	out	the	dollar	and	kyat	amounts		

Dollar to Kyat conversion program
Enter amount in dollars: 10
Enter dollar to kyat exchange rate: 2100
10 dollars = 21000 kyats

	

3. Write	a	program	to	calculate	how	much	someone	gets	paid	per	week	based	on	
the	number	of	hours	they	work	per	week.	The	program	asks	the	user	to	enter	the	
number	of	hours	worked	and	the	rate	per	hour	and	then	displays	the	total	pay,	
with	a	blank	line	between	each	line	of	output:	

	

Enter number of hours worked: 20.5

Enter rate per hour: 10

Total pay = 205.0

	 	

4. Write	a	program	to	display	your	total	savings	for	3	weeks	based	on	saving	$10	in	
Week	1,	$15	in	Week	2,	and	$20	in	Week	3.	Use	3	variables,	one	for	each	week's	
savings	and	one	the	total	amount	saved.	Then	calculate	the	total	amount	of	
money	saved	over	the	three	weeks	by	adding	the	3	variables.	Print	the	result	as	
follows:

You saved a total of 45 dollars
Week 1 you saved 10 dollars
Week 2 you saved 10 dollars
Week 3 you saved 10 dollars

5. You	sell	10	cups	of	lemonade	at	$2.50	each.	Calculate	the	total	amount	of	money	
you	earned	by	multiplying	the	number	of	cups	sold	by	the	price	per	cup	using	3	
variables,	one	for	the	number	of	cups,	one	for	the	cost	per	cup	and	one	for	the	
total	amount	sold.	Print	the	result	as	follows,	with	a	blank	line	between	each	line	
of	output:	
	

Number of cups sold: 10

Price per cup: 2.50

Total sold: 25.00

	

Lesson 4: Conditional Statements - if

All of our programs to date have been made up of one or more statements. The
statements have been executed one after the other in our programs, that is
sequentially. However there are many times in programming where we do not wish to
execute statements in this way. Sometimes we wish to skip over some statements and
sometimes we wish to repeat some statements. This is the purpose of conditional
statements.

People are familiar with making decisions. For example, consider the following
sentences:

 If I get hungry, I will eat my lunch.
 If the weather is cold, I will wear my coat.

These two sentences are called conditional sentences. Such sentences have two
parts: a condition part ('If I get hungry', 'If the weather is cold') and an action part ('I
will eat my lunch', 'I will wear my coat').

The action will be only be carried out if the condition is satisfied. To test if the condition
is satisfied we can rephrase the condition as a question with a yes or no answer. In
the case of the first sentence, the condition may be rephrased as 'Am I hungry ?' If the
answer to the question is yes, then the action will be carried out (i.e. the lunch gets
eaten), otherwise the action is not carried out.

We say the condition is true (evaluates to true) in the case of a yes answer. We say
the condition is false (evaluates to false) in the case of a no answer. Only when the
condition is true will we carry out the action. This is how we handle decisions daily.

In programming, we have the same concept. We have conditional statements. They
operate exactly as described above. One of these is known as the if statement. This
statement allows us evaluate (test) a condition and carry out an action if the condition
is true.

In Python, the keyword if is used for such a statement. As an example, we modify the
program to convert metres to centimetres to test if the value of metres is positive
(greater than 0) before converting it to centimetres.

Note you put a ':' after the condition in an if statement

The action statement(s) are indented in Python. This allows Python to identify the statements
making up the actions to be carried out, when the condition is true.

The action statements end with the first non-indented statement follow the if.

Example L4.1

convert5.py: converts metres to centimetres
check quantity of metres is positive
Author: Joe Carthy
Date: 21/10/2023

metres = float (input('\nEnter number of metres: '))

Check if metres is positive

if metres > 0:
 centimetres = metres * 100
 print(f'\n {metres} metres is {centimetres} centimetres\n\n')

if metres <= 0:
 print(f'\nEnter a positive number for metres\n')
 print(f'\nYou entered: {metres} \n\n')

Executing this program with -42 as input produces as output:

Enter number of metres: -42

Enter a number for metres

You entered -42

The first if statement tests if the value of metres is greater than 0 (metres > 0). If
this is the case, then the conversion is carried out and the result displayed.

Otherwise, if the value of metres is not greater than 0, this does not happen i.e. the two
action statements are skipped.

The second if statement tests if metres is less than or equal to 0. If this is the case, then
the message to enter a positive value is displayed and the value entered is displayed. If this
is not the case the two print statements are skipped and the program terminates.

In this particular example, only one of the conditions can evaluate to true, since they are
mutually exclusive i.e. metres cannot be greater than 0 and at the same time be less than
or equal to 0.

Because this type of situation arises very frequently in programming i.e. we wish to carry out
some statements when a condition is true and other statements when the same condition is
false, a special form of the if statement is provided called the if-else statement. The
general format may be written as

if (condition):
 action statements1 #carried out if condition is true
else:
 action statements2 #carried out if condition is false

Example L4.2

We rewrite the program L4.1 using if-else:

convert6.py: converts metres to centimetres
check quantity of metres is positive
Author: Joe Carthy
Date: 21/10/2023

metres = float (input('\nEnter number of metres: '))

if metres > 0:
 centimetres = metres * 100
 print(f'\n {metres} metres is {centimetres} centimetres\n\n')
else:
 print(f'\nPlease enter a positive number for metres\n')
 print(f'\nYou entered: {metres} \n\n')

This program operates in the same way as the previous example. However, it is more efficient,
in that the condition has only to be evaluated once, whereas in first example, the condition is
evaluated twice. Note the action statements for else must be indented just as for if.

Example L4.3

This program prompts the user to enter the number of hours worked in a week and the rate
of pay per hour. It displays the weekly pay calculated as (hours worked) * (rate [per hour).

There are two conditions. Workers can work a maximum of 100 hours per week and the
maximum hourly pay rate is 50. The program checks these two conditions

pay.py: Calculate and display hourly pay

hours_worked = float(input('\nEnter hours worked: '))

if hours_worked > 100:
 print(f'\nHours worked cannot exceed 100: {hours_worked}')
else:
 rate_per_hour = float(input('\nEnter rate per hour: '))
 if rate_per_hour > 50:
 print(f'\nRate too large: {rate_per_hour}')
 else:
 pay = rate_per_hour * hours_worked
 print(f'\nPay = {pay} for {hours_worked} hours worked
at {rate_per_hour} per hour')

Enter number of hours worked: 20

Enter rate per hour: 20

Pay = 400.0 for 20.0 hours worked at 10 per hour

In L4.2, if a user enters a value greater than 100 for hours worked, the condition in the first
if is true so the action is carried out (display that this number is too large) and all of the
statements following else are skipped.

If a valid number of hours is entered, then we carry out the statements for the first else.
Here we read the hourly rate.

If this. number is too large we display an error and skip the statements in the second else,
otherwise we carry out these statements i.e. calculate the pay and display it.

This programs shows that we can have if and if-else statements as part of the actions
for any if statement.

We call a condition (e.g. metres > 0) a Boolean expression or a conditional expression.

This simply means that there are only two possible values (true or false) which the condition
can yield.

A Boolean expression evaluates to either true or false.

More on Conditions

There are only six types of condition that can arise when comparing two numbers.

We can compare for:

1. equality - are they the same ?

2. inequality – are they different ?

3. is one greater than the other ?

4. is one less than the other ?

5. is one greater than or equal to the other ?

6. is one less than or equal to the other ?

The following illustrates how to write the various conditions to compare the variable feet to
the number 0 in Python:

(feet == 0) is feet equal to 0?

(feet != 0) is feet not equal to 0?

(feet > 0) is feet greater than 0?

(feet < 0) is feet less than 0?

(feet >= 0) is feet greater than or equal to 0?

(feet <= 0) is feet less than or equal to 0?

Technically, the symbols ==, <>, <, >, <=, and >=, are called relational operators, since they
are concerned with the relationship between numbers.
We can also compare two strings using the same operators. We often want to test if one
string is the same as (equal to) another string as we shall in the next example.

Example L4.4

A calculator program to handle both subtraction and addition. The user is prompted for the
first number, then for a '+' or '-' character to indicate the operation to be carried out, and
finally for the second number. The program calculates and displays the appropriate result:

calc2.py: Calculator program to add or subtract numbers
Author: Joe Carthy
Date: 01/10/2023

number1 = float(input('\nEnter first number: '))

operation = input('\nEnter operation [+ or –] ')

number2 = float(input('\nEnter second number: '))

if operation == '+':
 sum = number1 + number2
 print(f'\n\nThe sum of {number1} and {number2} is {sum} \n\n')
else:
 diff = number1 - number2
 print(f'\n\nTaking {number2} from {number1} is {diff} \n\n')

Executing this program produces as output:

Enter first number: 9

Enter operation [+ or -]: -

Enter second number: 4

Taking 4.0 from 9.0 is 5.0

We compared the string operation with the string '+' in the above code.

The code in L4.4 'assumes' that if the operation is not '+' then it must be '-' but the user
could have hit the wrong key. Example L4.5 below, checks that the actual characters '+', or '-'
were entered. It deals with the possibility that it was neither '+', or '-' that is the user made a
mistake.

User data entry mistakes are very common and professional programmers always check
that the user input is as was expected.

Example L4.5

calc3.py: Calculator program to add or subtract 2 numbers
Author: Joe Carthy
Date: 01/10/2023

number1 = float(input('\nEnter first number: '))

operation = input('\nEnter operation [+ or –] ')

number2 = float(input('\nEnter second number: '))

if operation == '+':
 sum = number1 + number2
 print(f'\n\nThe sum of {number1} and {number2} is {sum} \n\n')

else:
 if operation == '-':
 diff = number1 - number2
 print(f'\n\nTaking {number2} from {number1} is {diff} \n\n')

 else:
 print(f'\nInvalid operation only + and – allowed\n')
 print(f'You entered: {operation} \n')

Executing this program produces as output:

Enter first number: 9

Enter operation [+ or -]: *

Enter second number: 4

Invalid operation – only + and – allowed
You entered: *

The code in L4.5 checks that a valid operation is entered (= or -). However, if the user
enters an invalid operation, then there is no need to ask for the second number, as we
did in L4.5. L4.6 below, addresses this issue but we have to understand combining
conditions first.

Combining conditions: and/or

We often need to combine two or more conditions in a statement. For example when
we make a decision on wearing a coat we might decide based on:

If it is raining and it is cold then I will wear a warm raincoat

Here we test two conditions: is it raining and is it cold. We only carry out the action
(wear a warm raincoat) if both conditions are true.

When we use and to combine conditions, we only carry out the action if both (all) the
conditions are true.

Sometimes we wish to test if either one of two conditions is true as in

If it is raining or it is cold then I will wear a coat

In this case, if any one of the conditions (is it raining /is it cold) is true, then we carry
out the action (wear a coat).

In our calculator program, we only need to ask the user to enter a second number if
the operation is either '+' or '-'. We can use the statement

if (operation == '+') or (operation == '-'):

to test if either '+' or '-' has been entered. If the user has entered one of these operations
then the actions for the if are carried out.

If an invalid operation has been entered, then the actions of the last else are carried out.

Example L4.6

calc4.py: Calculator program to add or subtract 2 numbers
ask for second number if a valid operation has been entered
Author: Joe Carthy
Date: 01/10/2023

num1 = float(input('\nEnter first number: '))

operation = input('\nEnter operation [+ or –] ')

if (operation == '+') or (operation == '-'):
user must have entered + or -
 num2 = float(input('\nEnter second number: '))

 if operation == '+':
 sum = num1 + num2
 print(f'\n\nThe sum of {num1} and {num2} is {sum} \n\n')
 else: # must be a -
 diff = num1 - num2
 print(f'\n\nTaking {num2} from {num1} is {diff} \n\n')

else:
 print(f'\nInvalid operation only + and – allowed\n')
 print(f'You entered: {operation} \n')

In L4.7 we rewrite L4.6 using and to test if a valid operation was entered. In this case we test
if the operation was not '+' and was not '-'. If both conditions are true, then the operation is
not a '+ and it's not a '-', so it is invalid.

if (operation != '+') and (operation != '-'):
 # then it must be an invalid operation

Example L4.7

calc5.py: Calculator program to add or subtract 2 numbers
ask for second number if a valid operation + or - has been
entered
Author: Joe Carthy
Date: 01/10/2023

num1 = float(input('\nEnter first number: '))

operation = input('\nEnter operation [+ or –] ')

if (operation != '+') and (operation != '-'):
 print(f'\nInvalid operation only + and – allowed\n')
 print(f'You entered: {operation} \n')

else:
 num2 = float(input('\nEnter second number: '))

 if operation == '+':
 sum = num1 + num2
 print(f'\n\nThe sum of {num1} and {num2} is {sum} \n\n')

 else:
 diff = number1 - number2
 print(f'\n\nTaking {num2} from {num1} is {diff} \n\n')

Example L4.8: Range checking

We often need to check if the input to a program lies in a range. For example, the age of a
child in Ireland lies between 1 and 18 years which can be expressed as great than 0 and less
than 18 years (age > 0 and age <18). The age of an adult is from 18 upwards, but we need an
upper limit such as 122, so we test if age lies between 18 and 122: (age >18 and age <= 122).
Note that 122 years is the age of oldest person to have lived so far.

Example L4.8 is a program to read a person’s age and output whether they are a child or an
adult using range checking.

age.py: Check if age is for a child or an adult
Author: Joe Carthy
Date: 01/10/2023

age = float(input('\n Enter age: '))

if (age > 0) and (age < 18):
 print(f'\n Child age: {age}')

if (age >= 18) and (age <= 122):
 print(f'\n Adult age: {age}')

if (age <= 0) or (age > 122):
 print(f'\n {age} not in age range for a person \n')

L4.8 outputs

 Enter age: 34

 Adult age: 34.0

and

 Enter age: 12

 Child age: 12.0

and

 Enter age: 150

 150.0 not in age range for a person

General format of if, if-else

 if condition:
 action1A
 action1B

The statements action1A and action1B will only be executed if the
condition is true

 if condition:
 action1A
 action1B
 else:
 action2A
 action2B

The statements action2A and action2B will only be executed if the
condition is false

Note that the action statements can be any Python statement, including another
if statement.

 if condition1 and condition2:
 action1A
 action1B

The statements action1A and action1B will be executed if both
condition1 and condition2 are true

 if condition1 or condition2:
 action1A
 action1B

The statements action1A and action1B will be executed if any one (or
both) of condition1 or condition2 is true

Lesson 4 Exercises

1. What are the 6 conditions that we can use to compare two numbers?

2. Write a program that asks the user to enter their exam score. If the score is
greater than or equal to 60, display 'Congratulations! You passed the exam'.
Otherwise, display 'Sorry, you did not pass the exam'.

score = int(input('Enter your exam score: '))
if score >= 60:

print('Congratulations! You passed the exam.')
else:

print('Sorry, you did not pass the exam.')	
	

3. Write	a	program	that	asks	the	user	to	enter	a	password.	If	the	password	is	
'password123',	display	'Access	granted'	Otherwise,	display	'Access	denied'		

	

4. Write a program that prompts the user to enter their age and whether they
have a driver's license ('yes' or 'no). If the person is 18 or older and has a
driver's license, display 'You can legally drive'.
If the person is 18 or older but does not have a driver's license, display 'You
can apply for a driver's license'.
If the person is under 18, display 'You are not old enough to drive'.	

	
Prompt the user to enter their age

age = int (input('Enter your age: '))

Prompt whether they have a driver's license

has_license = input('Do you have a drivers license?
[yes/no]: ')

Check the driving eligibility

if (age >= 18) and (has_license == 'yes'):
 print('You can legally drive.')

if (age >= 18) and (has_license == 'no'):
 print('You can apply for a drivers licence')

if (age < 18):
 print ('You are not old enough to drive.')

	

5. Write a program to simulate a cash register for a single purchase. The program should
read the unit cost (real number) of an item and the numbers of items purchased. The

program should display the total cost for the items. If the unit cost is greater than
10000, the program should display an error message, 'Invalid unit cost – too large.'

If the unit cost is 0 or a negative number it should display an error message, 'Unit cost
must be greater than zero'.

Enter unit cost: 5.5
Enter number of units: 10
Total cost: 55.0

Enter unit cost: 0
Unit cost must be greater than 0

6. Write a program to show a menu of areas to be calculated and to calculate the area

chosen by the user. The output you are to display, is shown in italics below

Choose the area you wish to calculate from the menu below

Compute Area of one of the following:

 s for the area of a square
 c for the area of a circle

r for the area of a rectangle

Enter your choice: r

Enter length: 4
Enter breadth: 5

Area of rectangle is: 20.0

The program should then prompt for the dimensions of the area:

length of a side in the case of a. square (area = length **2)

radius in the case of a circle (area = 3.14 * radius**2)

length and breadth in the case of a rectangle (area = length * breadth).

7. Write a program to read two numbers and display which is the largest and smallest of

the numbers entered.

Enter first number: 4
Enter second number: 5

5 is the largest number
4 is the smallest number

Lesson 4 Assignments

1. Write	a	program	that	prompts	the	user	to	enter	their	exam	score	(out	of	100).	If	
the	score	is	90	or	above,	print	'You	got	an	A!'	If	the	score	is	between	80	and	89,	
print	'You	got	a	B.'	If	the	score	is	between	70	and	79,	print	'You	got	a	C.'		
	

2. Write	a	program	to	calculate	how	much	someone	gets	paid	per	week	based	on	
the	number	of	hours	they	work	per	week.	The	program	asks	the	user	to	enter	the	
number	of	hours	worked	and	the	rate	per	hour	and	then	displays	the	total	pay		
	
The	program	must	check	that	the	number	of	hours	worked	does	not	exceed	100	
and	display	an	appropriate	message	if	this	is	the	case.	It	must	also	check	that	the	
rate	per	hour	does	not	exceed	25.	It	should	also	check	that	the	above	numbers	
are	greater	than	zero	e.g.	

Enter number of hours worked: 120
Number of hours too large

Enter number of hours worked: -5
Number of hours must be greater than 0

3. Write	a	program	to	play	a	guessing	game.	Th	eprogram	'knows'	a	secret	word	e.g.	
'car'.	The	user	is	asked	to	guess	the	secret	word	and	an	appropriate	message	is	
displayed:	

Guess the secret word: blue
blue is not the secret word ! Try again !

	
Guess the secret word: car
Well done – you guessed it!

4. Write a program to read three numbers and display which is the largest and smallest
of the numbers entered.

Enter first number: 4
Enter second number: 7
Enter third number: 1

7 is the largest number
1 is the smallest number

5. Write a program that prompts the user to enter an exam score (out of 100). If the

score is 90 or above, display 'You got an A'. If the score is between 80 and 89, display
'You got a 'B'. If the score is between 70 and 79, display 'You got a C'. If the score is
between 60 and 69, display 'You got a D'. If the score is below 60, display 'You got an
E'.

Appendix 1: Solutions

Lesson 1 Solutions

1.	What	is	the	output	of	the	following	print	statement?		

print('Have a great day!')

c.	Have	a	great	day!		

	

a. What	is	the	output	of	the	following	statements?	
print('Hi there!')
print('How are you doing?')

Hi	there!		
							How	are	you	doing?		

b. Write	a	program	that	prints	a	message	saying		

I	love	Python!		

print('I love Python! ')

	

c. Write	a	program	that	prints	a	message	saying	your	name	and	your	age,	
e.g.		

My	name	is	Colin.	I	am	20	years	old!		

print('My name is Colin. I am 20 years old! ')

	

d. Write	a	program	to	display	the	message	'Welcome	to	Python'	three	times,	on	
separate	lines	using	three print	statements.		

print('Welcome to Python! ')

print('Welcome to Python! ')

print('Welcome to Python! ')

	

e. Write	a	program	to	display	the	message	'Python	is	awesome!'	
two	times,	on	separate	lines,	using	only	one	print	statement	
and	\n		

	

print('Python is awesome!\n Python is awesome!\n ')

	
f. What	are	the	syntax	errors	in	the	following	statements:	

	
print('Hello ! Goodbye!)- missing closing '
print(Hello ! Goodbye!') – missing opening '
print('Hello ! Goodbye!' - missing closing)
print 'Hello ! Goodbye!'). – missing opening (
prlnt('Hello ! Goodbye!') – misspelt print

Lesson 2 Solutions

1. Valid or invalid variable names
a. Is the variable name TotalMarks correct - Yes
b. Is the variable name number-of-students correct? NO – cannot use –in variable
name
c. Is the variable name firstName correct? Yes
d. Is the variable name myVar1 correct? Yes
e. Is the variable name customerName correct? Yes
f. Is the variable name productPrice correct? Yes
g. Is the variable name 3rdStudent correct? NO – cannot start with a digit
h. Is the variable name isAvailable? correct? Yes
i. Is the variable name total-sales correct? NO – cannot use –in variable name
j. Is the variable name customer_email correct? Yes

2. Write	a	program	that	asks	the	user	for	their	name	using	input.	Store	the	name	

in	a	variable	and	display	a	personalized	greeting	using	the	variable.		
	

name = input('Enter your name: ')

 print('Hello, how are you ', name)
	
	

3. What	is	the	output,	if	any,	of	the	following	program:	
	

print('hello\n')
print('bye bye\n')

No	output	because	any	text	following	#	is	treated	as	a	comment	and	ignored	by	
Python	

	

4. Write	a	program	that	prompts	the	user	to	enter	their	favourite	colour	and	
favourite	animal	using	the	input.	Store	these	values	in	separate	variables	and	
display	them	in	a	sentence	:

favourite_colour = input('Enter your favourite colour: ')
favourite_animal = input('Enter your favourite animal: ')

 print('My favourite colour is ', favourite_colour, 'and my
favourite animal is', favourite_animal)

Lesson 3 Solutions

Q1:

a. The data type of the variable 'age' is integer.

b. The data type of the variable 'name' is string.

c. The data type of the variable 'price' is float.

d. The data type of the variable 'is_valid' is boolean.

e. The data type of the variable 'quantity' is integer.

f. The data type of the variable 'message' is string.

g. The data type of the variable 'discount' is float.

2. Write a program to convert 10 dollars to kyats using an exchange rate of 1
dollar = 2100 kyats.

convert 10 dollars to kyats

dollars = 10
kyats = dollars * 2100

 print(f '{dollars} dollars = {kyats} kyats ')
	

8. Write a program that takes a single length (a float) and calculates the following:
• The area of a square with side of that length. (length * length)
• The volume of a cube with side of that length. (length ** 3)
• The area of a circle with diameter of that length (3.14 * (length/2)**2))

calculate area of square, volume of cube and area of circle

length = float(input('Enter length: '))

area_of_square = length * length
cube_volume = length ** 3
area_of_circle = 3.14 * ((length / 2)**2)
print(f' Area of square: {area_of_square:.2f}')

 print(f' Volume of cube: {cube_volume:.2f}')
print(f' Area of circle: {area_of_circle:.2f}')

7. Write a program that takes an amount (a float), and calculates the tax due according
to a tax rate of 20%

calculate tax due at 20%

amount = float(input('Enter amount for tax at 20%: '))

tax = amount * 0.20
print(f'Tax: {tax:.2f}')

8. Write a program to simulate a cash register for a single purchase. The program reads
the unit cost of an item and the numbers of items purchased. The program displays
the total cost for that number of units:

Enter unit cost: 5
Enter number of units: 6

Total cost of 6 units: 30.00

calculate total cost as number of unit * unit cost

unit_cost = float(input('Enter unit cost: '))

number_units = float(input('Enter number of units: '))

total = unit_cost * number_units

print(f'\nTotal cost of {number_units} units: {total:.2f}')

	

Lesson 4 Solutions

1. What	are	the	6	conditions	that	we	can	use	to	compare	two	numbers?	
See	Lesson	4	in	Handbook	
	

2. Write a program that asks the user to enter their exam score. If the score is
greater than or equal to 60, display 'Congratulations! You passed the exam'.
Otherwise, display 'Sorry, you did not pass the exam'.

score = int(input('Enter your exam score: '))
if score >= 60:

print('Congratulations! You passed the exam.')
else:

print('Sorry, you did not pass the exam.')	
	

3. Write	a	program	that	asks	the	user	to	enter	a	password.	If	the	password	is	
'password123',	display	'Access	granted'	Otherwise,	display	'Access	denied'		

password = input('Enter your password: ')
if password == 'password123':

print('Access granted')
else:

print('Access denied')

4. Write a program that prompts the user to enter their age and whether they
have a driver's license ('yes' or 'no). If the person is 18 or older and has a
driver's license, display 'You can legally drive'.
If the person is 18 or older but does not have a driver's license, display 'You
can apply for a driver's license'.
If the person is under 18, display 'You are not old enough to drive'.	

Prompt the user to enter their age

age = int (input('Enter your age: '))

Prompt whether they have a driver's license

has_license = input('Do you have a drivers license?
[yes/no]: ')

Check the driving eligibility

if (age >= 18) and (has_license == 'yes'):
 print('You can legally drive.')

if (age >= 18) and (has_license == 'no'):
 print('You can apply for a drivers licence')

if (age < 18):
 print ('You are not old enough to drive.')	 	

5. Write a program to simulate a cash register for a single purchase. The program should
read the unit cost (real number) of an item and the numbers of items purchased. The
program should display the total cost for the items. If the unit cost is greater than
10000, the program should display an error message, 'Invalid unit cost – too large.'
If the number of units is 0 or a negative number it should display an error message,
'Number of units must be greater than zero'.

cash.py: Calculate and display bill for items purchased

unit_cost = float(input('\n Unit cost: '))

if unit_cost > 10000:
 print(f'\n Unit cost {unit_cost} cannot exceed 10000: ')
else:

 num_units = float(input('\n Number of units: '))

 if num_units <= 0:
 print(f'\n Num of units {num_units} must be > 0')
 else:

 cost = num_units * unit_cost
 print(f'\n Total cost: {cost} ')

6. Write a program to show a menu of areas to be calculated and to calculate the area
chosen by the user.

calculate areas giving user options in a menu

print(f' s for the area of a square \n')
print(f' c for the area of a circle \n')
print(f' r for the area of a rectangle \n')

shape = input('\n Enter you choice [s, c, r] ')

if (shape == 's') :
 length = float(input(' Enter length: '))
 area_of_square = length * length
 print(f' Area of square: {area_of_square:.2f}')

if (shape == 'c'):
 radius = float(input(' Enter radius: '))
 area_of_circle = 3.14 * radius ** 2
 print(f' Area of circle: {area_of_circle:.2f}')

if (shape == 'r'):
 length = float(input(' Enter length: '))
 breadth = float(input(' Enter length: '))
 area_of_rectangle = length * breadth
 print(f' Area of rectangle: {area_of_rectangle:.2f}')

7. Write a program to read two numbers and display which is the largest and smallest of

the numbers entered.

Find largest and smallest of two numbers

n1 = float(input('First number: '))

n2 = float(input('Second number: '))

if n1 > n2 :

large = n1
small = n2

 if n1 < n2 :
 large = n2
 small = n1
 if n1 == n2 :
 print(f' First number {n1} = Second number {n2} \n')
 else :
 print(f' Largest is {large} and smallest is {small} \n')

