
Python Programming Handbook

This is an informal introduction to Python programming. It introduces the beginner to
some fundamental programming concepts such as: input/output, variables and
conditional statements.

Overview
One point about programming must be clarified immediately: Anyone can learn to
program computers. However, you must be willing to spend some time studying and
practising.

There are two aspects to programming that must be mastered. One concerns problem
solving and the other concerns the programming language, in this case Python, that
is to be used.

You must learn how to solve problems. This is the core of programming. But you also
must learn how to express your problem solution in Python, so that it can be carried out
on a computer. These are two separate skills. You must try not to confuse them. It is
difficult, however, to explain one without reference to the other.

Problem Solving Skills
Computer programming is about problem solving. Every computer program solves some
particular problem, even programs to play games. It is impossible to write a computer
program unless you understand the problem you are being asked to solve. In
programming, you solve the problem, not the computer. A computer program describes
to the computer what it must do and how it is to be done. You give the computer
instructions in the form of a program, telling it what to do and how to do it. The set of
instructions required to solve a problem is a computer program

The term algorithm is used to describe the set of steps that solve a problem. An
algorithm may be expressed in English or in a programming language. A computer
program must be expressed in a programming language. In programming, we first
develop an algorithm for the problem at hand, and then we translate this algorithm to a
Python program, so that it can be executed (carried out, ran) on a computer.

Sometimes we make mistakes in telling the computer what to do. We overlook part of the
problem or do not understand what to do ourselves. In these cases, the computer
program will not produce the 'right answer'. It is, however, still solving a problem. It is
simply not the problem we wanted to solve. For this reason, it is important to thoroughly
check that your programs do indeed solve the problem you intended.

1



Lesson 1: Output
In this lesson we learn how to perform output – to display messages on your screen.

All program code will be displayed using the Courier font in this text.

Output is the term used to describe information that the computer displays (writes) on
your screen or stores (writes) on a disk drive.

The commonest form of output is that of displaying a message on your screen. In Python,
we use the print statement to display output on the screen.

The following print statement will display the message:

My name is Beth. This is my first program

on the screen.

print( 'My name is Beth. This is my first program' )

This is a single Python program statement. A statement is a command to the computer
to carry out an action. So our first Python program is composed of this single statement.
To execute this program, it is stored in a file which we call print1.py. which contains
one line:

print( 'My name is Beth. This is my first program' )

To execute the program we use the command python3 which runs the program:

% python3 print1.py
My name is Beth. This is my first program

You may also run Python programs using an IDE which will be discussed later.

We call the message that print displayed a string.

A string is a list of characters in quotes. You may put any characters that you wish in a
string. Strings can be represented by characters inside either single or double quotes:

'My name is Beth.'
"My name is Beth."

You can display strings using a print:

print( 'Hello ! Goodbye!' )
print( 'rubbish 123 rubbish xyz @£$%^&*' )

2



Statements

When people communicate in any language, they use sentences. When you write down
a sentence in English, you have a full stop at the end. This tells us where the sentence
ends. You call the full stop a sentence terminator i.e. it indicates the end of a sentence.

Similarly, when you write programs you also use sentences to communicate with the
computer. In programs, sentences are called statements. They also have a terminator.
Python statements use the end of line to terminate a statement. The 2 statements below
are terminated by the newline character.

print( 'Hello ! Goodbye!' )
print( 'rubbish 123 rubbish xyz @£$%^&*' )

After you entered ) on the first line, you pressed the Return key on the keyboard to start a
new line – we call this the newline character. Similarly after you entered ) on the second
line, you also pressed Return thus starting a new line.

If you make a mistake entering a statement, a computer will not understand the statement
and it will display an error message. This often caused by a spelling error or a missing
bracket or quotation mark. For example, in a programming, just as in English, you must
always have the correct number of quotation marks and brackets.

Left brackets such as (, { and [ are called opening brackets.

The quotation marks at the start of a phrase: " (double) and ' (single) are called
opening quotes.

Right brackets such as ) , } and ] are called closing brackets and quotation marks at the
end of a phrase are called closing quotes.

A simple rule is that for every opening bracket or quotation mark you must have a
corresponding closing bracket or quotation mark.

Example 1.1: Matching brackets and quotes:

'Hello'
( age > 10 )
'x'
list[10]

Breaking this rule causes a syntax error. The following are examples of syntax errors:

age > 10)
'x
list[10
prin( 'Hello ! Goodbye!' )

The last error is due to misspelling print

3



What to do when an error occurs
When a syntax error occurs, you must work out what mistake(s) you have made. This
means checking the statements of your program and seeing where the syntax is
incorrect.

You then edit your program to correct the mistake. When you have corrected your
program, it can be executed.

To execute a program or to run a program means that the computer carries out the
statements making up the program.

A Python program is made up of a group of one or more statements. These statements
allow us to control the computer.

Using them, we can display information on the screen, read information from the
keyboard and process information in a variety of ways.

As we proceed we will describe the different kinds of statements which are:

Input/Output (I/O) statements (e.g. display information on screen) Lessons 1 and 2
Variable manipulation statements (e.g. to do arithmetic) Lesson 3
Conditional statements (e.g. to make decisions) Lessons 4 and 5

We will also look at more complex variables called arrays and lists in Lesson 6

4



Lesson 1 Exercises – try these in your own time

1. What is the output of the following print statement?

print( 'Have a great day!')

a. 'Have a great day!'

b. 'Have a great day'

c. Have a great day!

d. 'Have a great day!'

2. What is the output of the following statements?
print('Hi there!')
print('How are you doing?')
a. Hi there! How are you doing?
b. How are you doing? Hi there!
c. 'Hi there!'

How are you doing?'
d. Hi there!

How are you doing?

3. Write a program that prints a message saying

I love Python!

4. Write a program that prints a message saying your name and your age, e.g.

My name is Colin. I am 20 years old!

5. Write a program to display the message 'Welcome to Python' three times, on
separate lines using three print statements.

6.
7. Write a program to display the message 'Python is awesome!' two times, on

separate lines, using only one print statement and \n

8. What are the syntax errors in the following statements:

print( 'Hello ! Goodbye! )
print( Hello ! Goodbye!' )
print( 'Hello ! Goodbye!'
print 'Hello ! Goodbye!' )
prlnt( 'Hello ! Goodbye!' )

5



Lesson 1 Assignments – you email these to UCD

1. Write a program that prints out your favourite food, followed by a blank line,
followed by your favourite colour, followed by a blank line, followed by your
favourite animal. Use either the \n character in one print statement or use
separate print statements.

2. Print a square made up of 4 @ characters per line using a single print
statement.

@@@@
@@@@
@@@@
@@@@

6



Lesson 2: Input and Variables
Input is the term used to describe the transfer of information from the keyboard (or a disk
) to the computer. We can use the word read for input e.g read information from the
keyboard. The question arises – where do we store the information we read in. This
introduces the concept of variables.

A variable is a container for information.

This means that we can store information in a variable. It is called a variable because at
any time we can change (vary) the information it stores.

So when we input information, we store it in a one or more variables. We give each
variable a unique name, which we use to identify it. The following are examples of
variable names we could use in a Python program:

colour
my_age
pension_age
name
taxcode
tax_rate
temperature
name
hourly_pay

Fundamental principle of writing clear programs

Choose meaningful names for variables

Using meaningful variable names it makes your programs easier to understand. For
example, if you are writing a program which deals with pension ages then you could use
any of the following variable names to store the pension age but which one makes is
easiest to understand:

pension_age
pa
p
x
pna

The variable name pension_age is the obvious choice. When you see this name you
automatically know what it the variable is being used for. If you use a name like p or x
then the name gives you no idea about what the variable is being used for.

7



We use the Python input statement to read information from the keyboard, into a
variable.

Example 1:Write a program to ask the user to enter their favourite colour. The program
reads this colour that the user types on the keyboard and displays a message followed by
the colour entered by the user.

favourite_colour = input('Enter your favourite colour: ')

print( favourite_colour )

If we execute the program the following appears on the screen (the bolded text is that
entered by the user on the keyboard. We will use this convention throughout the text).

Enter your favourite colour: blue
blue

The variable favourite_colour is used to store the characters that the user types on
the keyboard that is, it will store a list of characters.

When you use a variable name with print it will display the value of the variable i.e.
the string blue in the example above.

The input() statement does two tasks: it displays the string in quotes and then reads
text from the keyboard, (for example the word blue may be entered), and it places this
text in the variable favourite_colour.

We have seen that the print statement is used to display output on the screen. It can be
used to display strings and numbers in the same print statement.

Example 2:Write a program to ask the user to enter their favourite colour. The program
reads this colour that the user types on the keyboard and displays a message followed by
the colour entered by the user.

favourite_colour = input('Enter your favourite colour: ')

print('Yuk ! I hate ', favourite_colour )

If we execute the program the following appears on the screen:

Enter your favourite colour: blue
Yuk ! I hate blue

8



The statement
print('Yuk ! I hate ', favourite_colour )

instructs the computer to display the message Yuk ! I hate followed by the value of the
variable favourite_colour i.e. blue in this example.

We use the expression 'the value of a variable' to mean 'the value contained in a
variable'.

We take the phrase 'the value of favourite_colour is blue' to mean 'the value
contained in the variable favourite_colour is blue'. We will use the shorter form
from now on.

Make sure you understand the difference between:

print( 'favourite_colour' )
and

print( favourite_colour )

In the first case, the word (string) favourite_colour appears on the screen.

In the second case, the value of a variable called favourite_colour is displayed
which could be anything, for example the word blue or whatever value the user has given
the variable like red, pink and orange. You can store many words in a string variable.

Rules for Variable Names

Python and every programming language, has rules on how you name variables:
• A variable name can only contain the following:

• letters (lowercase and uppercase, ie a–z and A–Z)
• digits (0–9)
• the underscore character '_'

• A variable name cannot start with a digit

• Variable names in Python are case-sensitive – it distinguishes between
uppercase and lower case letters so that colour and Colour are different
variables

• There are a number of reserved words or keywords that have built-in meanings
in Python and cannot be used as variable names (e.g. if, return, def, del,
break, for, in, else, while, import)

The following are legal or valid variable names in Python:

Colour, name, firstname, surname, class1, class 602,
first_name, second_name, address_line1.

9



The use of the underscore '_' character is very useful in creating meaningful names made
up of 2 or more words.

Do not confuse the underscore character with the minus sign '-'. The minus sign (or any
other symbol) cannot be used in a variable name. thus first-name is not a valid
variable name.

Comments

In a Python program, any text after # is called a comment and is ignored by Python.
This text is there to help explain to someone reading the program, what the program does
and how the program works. Comments are an important component of programs.
This is because when you read your programs some time after writing them, you may find
them difficult to understand, if you have not included comments to explain what you were
doing. They are even more important if someone else will have to read your programs
e.g. your tutor who is going to grade them!

It is a useful idea to start all programs with comments which give the name of the file
containing the program, the purpose of the program, the authors name and the date on
which the program was written, as the first comments in any program. Example 2 could
be written as:

# colour.py: Prompt user to enter colour and display a message
# Author: Joe Carthy
# Date: Oct 20 2022

favourite_colour = input('Enter your favourite colour: ')

print('Yuk ! I hate ', favourite_colour )

10



Lesson 2 Exercises
1. Valid or invalid variable names

a. Is the variable name TotalMarks correct?
b. Is the variable name number-of-students correct?

c. Is the variable name firstName correct?
d. Is the variable name myVar1 correct?
e. Is the variable name customerName correct?
f. Is the variable name productPrice correct?
g. Is the variable name 3rdStudent correct?
h. Is the variable name isAvailable? correct?
i. Is the variable name total-sales correct?
j. Is the variable name customer_email correct?

3. Write a program that asks the user for their name using input. Store the name in
a variable and display a personalized greeting using the variable.

4. What is the output, if any, of the following program:

# print('hello\n')
# print('bye bye\n')

5. Write a program that prompts the user to enter their favourite colour and favourite
animal using the input. Store these values in separate variables and display them
in a sentence :

My favourite colour is … and my favourite animal is ..

Lesson 2 Assignments
i. Write a program that prompts the user to enter their favourite number using input.

Store the number in a variable and print a message that includes the user's
favourite number.

ii. Create a program that simulates a hospital registration system. Prompt the user to
enter the following information:

Name
Surname
Age
Height (in cm)

Store each piece of information in a separate variable with an appropriate name.
Finally, print the information in the following format:

Name: Joe
Surname: Carthy
Age: 100

11



Height: 180

12



Lesson 3: Variables and Assignment
In Lesson 2 we used input to give a variable its value.. Giving a variable a value is
called assignment. We can use assignment to give a value to a variable directly in a
program without input. We may give the variable a value or compute a value based on
the values of other variables. For example, suppose we have a variable called metres,
to which we wish to give the value 12. In Python we write:

metres = 12

This is usually read as 'metres is assigned the value 12'. Of course, we could use any
value instead of 12. Other examples of assigning values to variables are:

centimetres = 50
litres = 10
metres = 4
colour = 'red'
name = 'Joe Carthy'
pay_per_hour = 10.5

Example L3.1: Write a program to convert 5 metres to centimetres. A simple Python
program to do this is given below.

#convert1.py: converts metres to centimetres
#Author: Joe Carthy
#Date: 21/10/2023

metres = 5
centimetres = metres * 100
print('5 m is ', centimetres, 'cms',)

Executing this program produces as output:

5 m is 500 cms

Here we use the value of the variable metres to compute the value of the variable
centimetres.

Other examples of such an assignment are:

gallons = 4
pints = gallons * 8
kilometres = 4
metres = 18
cms = (kilometres * 100000) + (metres * 100)

13



The program to convert metres to centimetres as presented in Example L3.1 is very
limited in that it always produces the same answer. It always converts 5 metres to
centimetres. A more useful version would prompt the user to enter the number of metres
to be converted and display the result:
Example L3.2: Converting metres to centimetres, version 2.

#convert2.py: converts metres to centimetres version 2
#Author: Joe Carthy
#Date: 21/10/2023

m = input('Enter number of metres: ')

metres = float ( m )

centimetres = metres * 100
print(metres, 'metres is ', centimetres, 'cms',)

Executing this program produces as output:

Enter number of metres: 4
4.0 metres is 400.0 cms

Variable Types
Important note: The input function reads from the keyboard and returns a list of
characters i.e. a string. Thus the variable m in the example above contains the string '4'
and not the number 4.

This is very confusing for beginners to programming. A fundamental aspect of variables is
that they have a type. The type of a variable tells you what kind of data it stores.

In our programs we will use three types: int (whole numbers), float (numbers with
decimal point) and string (list of characters).

When you are working with numbers and wish to do arithmetic with them (add, subtract,
multiply and divide) then you must use either the type int or float.

So it is crucial to understand the difference between the number 42 and the string '42' as
used in the following:

a = 42
b = a * 2

This results in b having the value 84. A and b are of type int in this case.

x = '42' # x is type string
y = x * 2 # y is type string

This results in y having the value 4242 – string of characters.

When you 'multiply' a string variable by n you get n copies of the string e.g.

14



The code:

x = 'bye'
y = x * 3
gives y the string value 'byebyebye'

This brings us back to Example L3.2 and the statements

m = input('Enter number of metres: ')

metres = float ( m )

The variable m is of type string.

The float function converts the string m to a number with a decimal point (real number).

This means that metres now contains a number which we can do arithmetic with.

The output of L3.2 is 'crowded' in that there is no blank line before or after the output or
between the two lines of output. This makes it hard to read the output. You can use the
'\n' character in strings to start new lines.

The version below fixes this issue by putting one '\n' in the input() function and 3 in the
print() function.

It also uses a shortcut to avoid using a string variable, m, in the previous examples. It
does this by converting the string from input to a float in one statement:

metres = float (input('\nEnter number of metres: '))

Example L3.3: Converting metres to centimetres, version 4

# convert4.py: converts metres to centimetres version 3
# Outputs extra blank lines to make it easier to read the output

#Author: Joe Carthy
#Date: 21/10/2022

metres = float (input('\nEnter number of metres: '))

centimetres = metres * 100

print('\n', metres, 'metres is ', centimetres, ' centimetres\n\n' )

When you run it, notice the extra blank lines

Enter number of metres: 3.5

15



3.5 metres is 350.0 centimetres

16



Some Fun making the computer beep!

When you use '\a' (called the BEL character) in print, the computer makes a beep
sound – it does not display anything. So the program below simply plays 3 beeps.

# beep.py: Just for fun - beep 3 times !!

print('\a \a \a')

Example L3.4: As another example of the use of I/O and variables consider a
simple calculator program. This program prompts for two numbers, adds them and
displays the sum.

# calc.py: Calculator program to add 2 numbers
# Author: Joe Carthy
# Date: 01/10/2023

number1 = float(input('\nEnter first number: '))

number2 = float(input('\nEnter second number: '))

sum = number1 + number2

print('\n\nThe sum of', number1, 'and', number2, 'is', sum, '\n\n')

17



calc.py outputs:

Enter first number: 2.4

Enter second number: 5.76

The sum of 2.4 and 5.76 is 8.16

Variables must be defined before you use them other
statements
Variables must be defined before you use them – you must give them a value.

If a variable is 'not defined' (not assigned a value), trying to use it will generate an error.

So if you run the 1 line program:

print ('x = ', x)

An error is displayed because the variable x has not been defined. The error
message may not be very user friendly such as: that below – the last line is the helpful
one:

Traceback (most recent call last):
File "<string>", line 1, in <module>
NameError: name 'x' is not defined

The most common reason for this error is mis-spelling the name of.variable as in the
code below

metres = 5
cms = metres / 100
print (f'{metrs} = {cms} centimetres')

Here we have misspelled metres in the print statement and an error is displayed:

Traceback (most recent call last):
File "<string>", line 3, in <module>

NameError: name 'metrs' is not defined

18



More on print() function and displaying variables
It can get quite complicated when we output strings and variables using print as in the
statement

print('\n\nThe sum of', number1, 'and', number2, 'is', sum, '\n\n')

There is a simpler way to display this message with print using f-strings. We put the
character f as the first item in print:

print(f'\n\nThe sum of {number1} and {number2} is {sum} \n\n')

which produces identical output to the earlier print

The sum of 2.4 and 5.76 is 8.16

When using an f-string, we enclose any variable we wish to display in {} brackets.

print will display the value of each variable in {}.

This avoids having to have separate strings in quotes, separated by commas, as in the
earlier version of print.

As another example consider the following variables and how we want to display them:

Name = ‘Joe Bloggs’
rate = 10.00
num_hours = 40
pay = rate * num_hours

Without using an f-string we display using:

print('Pay for ', name, 'at ', rate, 'per hour is', pay)

which outputs

Pay for Joe Bloggs at 10.0 per hour is 400.0

We can display the same output with a simpler print using f-strings:
print(f'Pay for {name} at {rate} per hour is {pay}')

displays the same output as the first print() above.

Pay for Joe Bloggs at 10.00 per hour is 400.00

19



Displaying a fixed number of decimal places

Python will display the result of numeric calculation to many decimal places.

For example,

x = 19/3.768

print(f'x = {x}' )

will output on my Mac computer:

x = 5.042462845010616

In most of our calculations it is enough to display result with 2 decimal
places.

We use an f-string to do this by following the variable in {} with
:.number of decimal pointsf you wish to output e.g. {x:.2f} specifies to
display x to 2 decimal places.

You can change the number from 2 to whatever you wish, to have that
number of places displayed after the decimal point.

To print x to 2 decimal points

x = 19/3.768

print(f'x = {x:.2f}')

outputs

x = 5.04

20



Lesson 3 Exercises
1. What is the data type of each variable?

a. What is the data type of the variable 'age'? age = 25
b. What is the data type of the variable 'name'? name = 'John Doe'
c. What is the data type of the variable 'price'? price = 9.99
d. What is the data type of the variable 'quantity'? quantity = 10
e. What is the data type of the variable 'message'? message = 'Hello'
f. What is the data type of the variable 'discount'? discount = 0.2

2. Write a program to convert 10 dollars to kyats using an exchange rate of 1 dollar =
2100 kyats.

10 dollars = 21000 kyats

Use print with f-strings in all of the following programs

3. Write a program that takes a single length (a float) and calculates the following:
• The area of a square with side of that length. (length * length)
• The volume of a cube with side of that length. (length ** 3)
• The area of a circle with diameter of that length (3.14 * (length/2)**2) )

Enter length: 4

Area of square: 16.0
Volume of cube: 64.0
Area of circle: 12.56

4. Write a program that takes an amount (a float), and calculates the tax due
according to a tax rate of 20%

Enter amount for tax at 20%: 200.0

Tax: 40.00

5. Write a program to simulate a cash register for a single purchase. The program
reads the unit cost of an item and the numbers of items purchased. The program
displays the total cost for that number of units:

Enter unit cost: 5
Enter number of units: 6

Total cost of 6 units: 30.00

6. Modify the programs 3, 4 and 5 above to display the output to one decimal point e.g.

Area of circle: 12.5

21



Lesson 3 Assignments
Use print with f-strings in all of the following programs

1. Ask the user to enter a temperature in Celsius and convert it to Fahrenheit using
the formula:

Fahrenheit = (Celsius * 1.8) + 32.
Print the converted temperature in Fahrenheit.

Enter temperature in Celsius: 100
100 degrees Celsius = 212.0 degrees Fahrenheit

2. Convert dollars to kyat as follows:
a. Display 'Dollar to Kyat conversion program'
b. Ask the user to enter an amount in dollars.
c. Ask the user to enter the kyat exchange rate for dollars.
d. Calculate kyat amount by multiplying the dollar amount by the exchange

rate.
e. Print out the dollar and kyat amounts

Dollar to Kyat conversion program
Enter amount in dollars: 10
Enter dollar to kyat exchange rate: 2100
10 dollars = 21000 kyats

3. Write a program to calculate how much someone gets paid per week based on the
number of hours they work per week. The program asks the user to enter the
number of hours worked and the rate per hour and then displays the total pay, with
a blank line between each line of output:

Enter number of hours worked: 20.5
Enter rate per hour: 10
Total pay = 205.0

22



4. Write a program to display your total savings for 3 weeks based on saving $10 in
Week 1, $15 in Week 2, and $20 in Week 3. Use 3 variables, one for each week's
savings and one the total amount saved. Then calculate the total amount of money
saved over the three weeks by adding the 3 variables. Print the result as follows:

You saved a total of 45 dollars
Week 1 you saved 10 dollars
Week 2 you saved 10 dollars
Week 3 you saved 10 dollars

5. You sell 10 cups of lemonade at $2.50 each. Calculate the total amount of money
you earned by multiplying the number of cups sold by the price per cup using 3
variables, one for the number of cups, one for the cost per cup and one for the
total amount sold. Print the result as follows, with a blank line between each line of
output:

Number of cups sold: 10
Price per cup: 2.50
Total sold: 25.00

23



Lesson 4: Conditional Statements – if statement
All of our programs to date have been made up of one or more statements. The
statements have been executed one after the other in our programs, that is sequentially.
However there are many times in programming where we do not wish to execute
statements in this way. Sometimes we wish to skip over some statements and sometimes
we wish to repeat some statements. This is the purpose of conditional statements.

People are familiar with making decisions. For example, consider the following
sentences:

If I get hungry, I will eat my lunch.
If the weather is cold, I will wear my coat.

These two sentences are called conditional sentences. Such sentences have two parts:
a condition part ('If I get hungry', 'If the weather is cold') and an action part ('I will eat
my lunch', 'I will wear my coat').

The action will be only be carried out if the condition is satisfied. To test if the condition is
satisfied we can rephrase the condition as a question with a yes or no answer. In the
case of the first sentence, the condition may be rephrased as 'Am I hungry ?' If the
answer to the question is yes, then the action will be carried out (i.e. the lunch gets
eaten), otherwise the action is not carried out.

We say the condition is true (evaluates to true) in the case of a yes answer. We say the
condition is false (evaluates to false) in the case of a no answer. Only when the
condition is true will we carry out the action. This is how we handle decisions daily.

In programming, we have the same concept. We have conditional statements. They
operate exactly as described above. One of these is known as the if statement. This
statement allows us evaluate (test) a condition and carry out an action if the condition is
true.

In Python, the keyword if is used for such a statement. As an example, we modify the
program to convert metres to centimetres to test if the value of metres is positive (greater
than 0) before converting it to centimetres.

Note you put a ':' after the condition in an if statement

The action statement(s) are indented in Python. This allows Python to identify the statements
making up the actions to be carried out, when the condition is true.

The action statements end with the first non-indented statement follow the if.

24



Example L4.1

# convert5.py: converts metres to centimetres
# check quantity of metres is positive
# Author: Joe Carthy
# Date: 21/10/2023

metres = float (input('\nEnter number of metres: '))

# Check if metres is positive

if metres > 0:
centimetres = metres * 100
print(f'\n {metres} metres is {centimetres} centimetres\n\n')

if metres <= 0:
print(f'\nEnter a positive number for metres\n')
print(f'\nYou entered: {metres} \n\n')

Executing this program with -42 as input produces as output:

Enter number of metres: -42

Enter a number for metres

You entered -42

The first if statement tests if the value of metres is greater than 0 (metres > 0). If this is
the case, then the conversion is carried out and the result displayed.

Otherwise, if the value of metres is not greater than 0, this does not happen i.e. the two action
statements are skipped.

The second if statement tests if metres is less than or equal to 0. If this is the case, then the
message to enter a positive value is displayed and the value entered is displayed. If this is not the
case the two print statements are skipped and the program terminates.

In this particular example, only one of the conditions can evaluate to true, since they are mutually
exclusive i.e. metres cannot be greater than 0 and at the same time be less than or equal to 0.

Because this type of situation arises very frequently in programming i.e. we wish to carry out
some statements when a condition is true and other statements when the same condition is false,
a special form of the if statement is provided called the if-else statement. The general format
may be written as

if (condition):
action statements1 #carried out if condition is true

else:
action statements2 #carried out if condition is false

25



Example L4.2

We rewrite the program L4.1 using if-else:

# convert6.py: converts metres to centimetres
# check quantity of metres is positive
# Author: Joe Carthy
# Date: 21/10/2023

metres = float (input('\nEnter number of metres: '))

if metres > 0:
centimetres = metres * 100
print(f'\n {metres} metres is {centimetres} centimetres\n\n')

else:
print(f'\nPlease enter a positive number for metres\n')
print(f'\nYou entered: {metres} \n\n')

This program operates in the same way as the previous example. However, it is more
efficient, in that the condition has only to be evaluated once, whereas in first example, the
condition is evaluated twice. Note the action statements for else must be indented just
as for if.

Example L4.3

This program prompts the user to enter the number of hours worked in a week and the
rate of pay per hour. It displays the weekly pay calculated as (hours worked) * (rate [per
hour).

There are two conditions. Workers can work a maximum of 100 hours per week and the
maximum hourly pay rate is 50. The program checks these two conditions

# pay.py: Calculate and display hourly pay

hours_worked = float(input('\nEnter hours worked: '))

if hours_worked > 100:
print(f'\nHours worked cannot exceed 100: {hours_worked}')

else:
rate_per_hour = float(input('\nEnter rate per hour: '))
if rate_per_hour > 50:

print(f'\nRate too large: {rate_per_hour}')
else:

pay = rate_per_hour * hours_worked
print(f'\nPay = {pay} for {hours_worked} hours worked at

{rate_per_hour} per hour')

Enter number of hours worked: 20

Enter rate per hour: 20

26



Pay = 400.0 for 20.0 hours worked at 10 per hour
In L4.2, if a user enters a value greater than 100 for hours worked, the condition in the
first if is true so the action is carried out (display that this number is too large) and all of
the statements following else are skipped.

If a valid number of hours is entered, then we carry out the statements for the first else.
Here we read the hourly rate.

If this. number is too large we display an error and skip the statements in the second
else, otherwise we carry out these statements i.e. calculate the pay and display it.

This programs shows that we can have if and if-else statements as part of the
actions for any if statement.

We call a condition (e.g. metres > 0) a Boolean expression or a conditional
expression.

This simply means that there are only two possible values (true or false) which the
condition can yield.

A Boolean expression evaluates to either true or false.

More on Conditions

There are only six types of condition that can arise when comparing two numbers.

We can compare for:

1. equality - are they the same ?

2. inequality – are they different ?

3. is one greater than the other ?

4. is one less than the other ?

5. is one greater than or equal to the other ?

6. is one less than or equal to the other ?

The following illustrates how to write the various conditions to compare the variable feet
to the number 0 in Python:

( feet == 0 ) is feet equal to 0?

( feet != 0 ) is feet not equal to 0?

( feet > 0 ) is feet greater than 0?

( feet < 0 ) is feet less than 0?

( feet >= 0 ) is feet greater than or equal to 0?

( feet <= 0 ) is feet less than or equal to 0?

27



Technically, the symbols ==, <>, <, >, <=, and >=, are called relational operators, since
they are concerned with the relationship between numbers.
We can also compare two strings using the same operators. We often want to test if
one string is the same as (equal to) another string as we shall in the next example.

Example L4.4

A calculator program to handle both subtraction and addition. The user is prompted for
the first number, then for a '+' or '-' character to indicate the operation to be carried out,
and finally for the second number. The program calculates and displays the appropriate
result:

# calc2.py: Calculator program to add or subtract numbers
# Author: Joe Carthy
# Date: 01/10/2023

number1 = float(input('\nEnter first number: '))

operation = input('\nEnter operation [+ or –] ')

number2 = float(input('\nEnter second number: '))

if operation == '+':
sum = number1 + number2
print(f'\n\nThe sum of {number1} and {number2} is {sum} \n\n')

else:
diff = number1 - number2
print(f'\n\nTaking {number2} from {number1} is {diff} \n\n')

Executing this program produces as output:

Enter first number: 9

Enter operation [+ or -]: -

Enter second number: 4

Taking 4.0 from 9.0 is 5.0

We compared the string operation with the string '+' in the above code.

The code in L4.4 'assumes' that if the operation is not '+' then it must be '-' but the user
could have hit the wrong key. Example L4.5 below, checks that the actual characters '+',
or '-' were entered. It deals with the possibility that it was neither '+', or '-' that is the user
made a mistake.

28



User data entry mistakes are very common and professional programmers always
check that the user input is as was expected.

29



Example L4.5

# calc3.py: Calculator program to add or subtract 2 numbers
# Author: Joe Carthy
# Date: 01/10/2023

number1 = float(input('\nEnter first number: '))

operation = input('\nEnter operation [+ or –] ')

number2 = float(input('\nEnter second number: '))

if operation == '+':
sum = number1 + number2
print(f'\n\nThe sum of {number1} and {number2} is {sum} \n\n')

else:
if operation == '-':
diff = number1 - number2
print(f'\n\nTaking {number2} from {number1} is {diff} \n\n')

else:
print(f'\nInvalid operation only + and – allowed\n')
print(f'You entered: {operation} \n')

Executing this program produces as output:

Enter first number: 9

Enter operation [+ or -]: *

Enter second number: 4

Invalid operation – only + and – allowed
You entered: *

The code in L4.5 checks that a valid operation is entered (= or -). However, if the user
enters an invalid operation, then there is no need to ask for the second number, as we did
in L4.5. L4.6 below, addresses this issue but we have to understand combining conditions
first.

30



Combining conditions: and/or

We often need to combine two or more conditions in a statement. For example when we
make a decision on wearing a coat we might decide based on:

If it is raining and it is cold then I will wear a warm raincoat

Here we test two conditions: is it raining and is it cold. We only carry out the action (wear
a warm raincoat) if both conditions are true.

When we use and to combine conditions, we only carry out the action if both (all) the
conditions are true.

Sometimes we wish to test if either one of two conditions is true as in

If it is raining or it is cold then I will wear a coat

In this case, if any one of the conditions (is it raining /is it cold ) is true, then we carry out
the action (wear a coat).

In our calculator program, we only need to ask the user to enter a second number if the
operation is either '+' or '-'. We can use the statement

if (operation == '+' ) or (operation == '-'):

to test if either '+' or '-' has been entered. If the user has entered one of these operations
then the actions for the if are carried out.

If an invalid operation has been entered, then the actions of the last else are carried out.

31



Example L4.6

# calc4.py: Calculator program to add or subtract 2 numbers
# ask for second number if a valid operation has been entered
# Author: Joe Carthy
# Date: 01/10/2023

num1 = float(input('\nEnter first number: '))

operation = input('\nEnter operation [+ or –] ')

if (operation == '+' ) or (operation == '-'):
# user must have entered + or -

num2 = float(input('\nEnter second number: '))

if operation == '+':
sum = num1 + num2
print(f'\n\nThe sum of {num1} and {num2} is {sum} \n\n')

else: # must be a -
diff = num1 - num2
print(f'\n\nTaking {num2} from {num1} is {diff} \n\n')

else:
print(f'\nInvalid operation only + and – allowed\n')
print(f'You entered: {operation} \n')

32



In L4.7 we rewrite L4.6 using and to test if a valid operation was entered. In this case we
test if the operation was not '+' and was not '-'. If both conditions are true, then the
operation is not a '+ and it's not a '-', so it is invalid.

if (operation != '+' ) and (operation != '-'):
# then it must be an invalid operation

Example L4.7

# calc5.py: Calculator program to add or subtract 2 numbers
# ask for second number if a valid operation + or - has been
entered
# Author: Joe Carthy
# Date: 01/10/2023

num1 = float(input('\nEnter first number: '))

operation = input('\nEnter operation [+ or –] ')

if (operation != '+' ) and (operation != '-'):
print(f'\nInvalid operation only + and – allowed\n')
print(f'You entered: {operation} \n')

else:
num2 = float(input('\nEnter second number: '))

if operation == '+':
sum = num1 + num2
print(f'\n\nThe sum of {num1} and {num2} is {sum} \n\n')

else:
diff = number1 - number2
print(f'\n\nTaking {num2} from {num1} is {diff} \n\n')

33



Example L4.8: Range checking

We often need to check if the input to a program lies in a range. For example, the age of
a child in Ireland lies between 1 and 18 years which can be expressed as great than 0
and less than 18 years ( age > 0 and age <18). The age of an adult is from 18 upwards,
but we need an upper limit such as 122, so we test if age lies between 18 and 122: (age
>18 and age <= 122). Note that 122 years is the age of oldest person to have lived so far.

Example L4.8 is a program to read a person’s age and output whether they are a child or
an adult using range checking.

# age.py: Check if age is for a child or an adult
# Author: Joe Carthy
# Date: 01/10/2023

age = float(input('\n Enter age: '))

if ( age > 0 ) and ( age < 18 ):
print(f'\n Child age: {age}')

if (age >= 18 ) and ( age <= 122 ):
print(f'\n Adult age: {age}')

if (age <= 0 ) or ( age > 122 ):
print(f'\n {age} not in age range for a person \n')

L4.8 outputs

Enter age: 34

Adult age: 34.0

and

Enter age: 12

Child age: 12.0

and

Enter age: 150

150.0 not in age range for a person

34



General format of if, if-else
if condition:

action1A
action1B

The statements action1A and action1B will only be executed if the
condition is true

if condition:
action1A
action1B

else:
action2A
action2B

The statements action2A and action2B will only be executed if the
condition is false

Note that the action statements can be any Python statement, including another if
statement.

if condition1 and condition2:
action1A
action1B

The statements action1A and action1B will be executed if both
condition1 and condition2 are true

if condition1 or condition2:
action1A
action1B

The statements action1A and action1B will be executed if any one (or
both) of condition1 or condition2 is true

35



Lesson 4 Exercises
1. What are the 6 conditions that we can use to compare two numbers?

2. Write a program that asks the user to enter their exam score. If the score is greater
than or equal to 60, display 'Congratulations! You passed the exam'. Otherwise,
display 'Sorry, you did not pass the exam'.
score = int(input('Enter your exam score: '))
if score >= 60:

print('Congratulations! You passed the exam.')
else:

print('Sorry, you did not pass the exam.')

3. Write a program that asks the user to enter a password. If the password is
'password123', display 'Access granted' Otherwise, display 'Access denied'

4. Write a program that prompts the user to enter their age and whether they have a
driver's license ('yes' or 'no). If the person is 18 or older and has a driver's license,
display 'You can legally drive'.
If the person is 18 or older but does not have a driver's license, display 'You can
apply for a driver's license'.
If the person is under 18, display 'You are not old enough to drive'.

# Prompt the user to enter their age

age = int (input('Enter your age: '))

# Prompt whether they have a driver's license

has_license = input('Do you have a drivers license? [yes/no]:
')

# Check the driving eligibility

if (age >= 18) and (has_license == 'yes'):
print('You can legally drive.')

if (age >= 18) and (has_license == 'no'):
print('You can apply for a drivers licence')

if (age < 18):
print ('You are not old enough to drive.')

5. Write a program to simulate a cash register for a single purchase. The program
should read the unit cost (real number) of an item and the numbers of items
purchased. The program should display the total cost for the items. If the unit cost
is greater than 10000, the program should display an error message, 'Invalid
unit cost – too large.'

36



If the unit cost is 0 or a negative number it should display an error message, 'Unit
cost must be greater than zero'.

Enter unit cost: 5.5
Enter number of units: 10
Total cost: 55.0

Enter unit cost: 0
Unit cost must be greater than 0

6. Write a program to show a menu of areas to be calculated and to calculate the
area chosen by the user. The output you are to display, is shown in italics below

Choose the area you wish to calculate from the menu below

Compute Area of one of the following:

s for the area of a square
c for the area of a circle
r for the area of a rectangle

Enter your choice: r

Enter length: 4
Enter breadth: 5

Area of rectangle is: 20.0

The program should then prompt for the dimensions of the area:
length of a side in the case of a. square (area = length **2)

radius in the case of a circle (area = 3.14 * radius**2)

length and breadth in the case of a rectangle (area = length * breadth).

7. Write a program to read two numbers and display which is the largest and smallest
of the numbers entered.

Enter first number: 4
Enter second number: 5

5 is the largest number
4 is the smallest number

37



Lesson 4 Assignments
1. Write a program that prompts the user to enter their exam score (out of 100). If the

score is 90 or above, print 'You got an A!' If the score is between 80 and 89, print
'You got a B.' If the score is between 70 and 79, print 'You got a C.'

2. Write a program to calculate how much someone gets paid per week based on the
number of hours they work per week. The program asks the user to enter the
number of hours worked and the rate per hour and then displays the total pay

The program must check that the number of hours worked does not exceed 100
and display an appropriate message if this is the case. It must also check that the
rate per hour does not exceed 25. It should also check that the above numbers are
greater than zero e.g.
Enter number of hours worked: 120
Number of hours too large
Enter number of hours worked: -5
Number of hours must be greater than 0

3. Write a program to play a guessing game. Th eprogram 'knows' a secret word e.g.
'car'. The user is asked to guess the secret word and an appropriate message is
displayed:
Guess the secret word: blue
blue is not the secret word ! Try again !

Guess the secret word: car
Well done – you guessed it!

4. Write a program to read three numbers and display which is the largest and
smallest of the numbers entered.

Enter first number: 4
Enter second number: 7
Enter third number: 1

7 is the largest number
1 is the smallest number

5. Write a program that prompts the user to enter an exam score (out of 100). If the
score is 90 or above, display 'You got an A'. If the score is between 80 and 89,
display 'You got a 'B'. If the score is between 70 and 79, display 'You got a C'. If the
score is between 60 and 69, display 'You got a D'. If the score is below 60, display
'You got an E'.

38



Lesson 5: Loops - while statement
We often wish to repeat one or more statements in a program. This is called looping or
repetition.

There are a number of looping techniques, but basically all program looping can be
performed using a while loop.

Loops are another form of conditional statement. In the case of a loop, we use the
condition to decide whether to repeat a statement(s) or not.

while condition:
action statement(s) # loop body

rest of program statements

The action statement(s) is only carried out if the condition is true in the same way as for
an if statement.

The action statement(s) of a loop is referred to as the loop body. This may be a single
statement or a group of statements.

After executing the loop body, the loop condition is tested again.

If the condition is still true, we execute the loop body and test the condition again.

This process continues until the condition evaluates to false.

When the loop condition evaluates to false, then the loop body is skipped and the rest
of program statements are executed.

The loop body statements may never be executed – this happens if the loop condition
evaluates to false the first time the while statement is executed.

39



Example L5.1
Modify the calculator program to sum pairs of numbers, until the user enters 0 as one of
the numbers. We read in the two numbers to be summed, calculate the sum and display
the result. We repeat these steps until the user enters 0.

We use a while loop to repeat the necessary statements:

# calc4.py: Repeat adding 2 numbers until user enters 0

n1 = 1 # Assign non-zero so that we can start the loop
n2 = 1

while (n1 != 0) and (n2 != 0) :
n1 = float(input('\nEnter first number [0 to quit]: '))
n2 = float(input('\nEnter second number [0 to quit]: '))
sum = n1 + n2
print(f'\nThe sum of {n1} and {n2} is {sum} \n\n')

print ('\n\nFinished summing\n')

The loop body is highlighted in blue. The loop body statements are repeated until the user enters
0 for one of the numbers, as shown below.

When the loop condition evaluates to false, the loop terminates and the first statement after the
loop body is executed – here it is a print to display that the program is finished.

Enter first number: 4
Enter second number: 6
The sum of 4.0 and 6.0 is 10.0

Enter first number: 20
Enter second number: 30
The sum of 20.0 and 30.0 is 50.0

Enter first number: 0
Enter second number: 6
The sum of 0.0 and 6.0 is 6.0

Finished summing

How Many Loop Iterations ?
The user may wish to sum 1 pair of numbers or 100 pairs. The user indicates if they wish
to finish by entering 0 for the one of the numbers. This type of loop is called aa
non-deterministic loop, as you do not know in advance how many times it will be
repeated.

In the next example we specify how many times we want to repeat the loop body. We call
this a counting loop. It is also called a deterministic loop, as it is determined in advance
how many repetitions (iterations) to carry out that is how many times we repeat (iterate)
the loop body.

40



Example L5.2

Modify the L5.1 to sum three pairs of numbers. In other words we wish to read in the two
numbers to be summed, calculate the sum and display the result, three times.

We sometime call such a loop a counting loop.

# calc5.py: Calculator program to add 2 numbers, 3 times

count = 1

while count <= 3:
n1 = float(input('\nEnter first number: '))
n2 = float(input('\nEnter second number: '))
sum = n1 + n2
print(f'\nThe sum of {n1} and {n2} is {sum} \n\n')
count = count + 1

print ('Finished summing\n')

calc5.py outputs:

>>> %Run calc4.py

Enter first number: 1
Enter second number: 2

The sum of 1.0 and 2.0 is 3.0

Enter first number: 3
Enter second number: 4

The sum of 3.0 and 4.0 is 7.0

Enter first number: 4
Enter second number: 5

The sum of 4.0 and 5.0 is 9.0

Finished summing

41



The while statement tests the condition ( count <= 4 ) and if it evaluates to true,
the statements in the loop body are executed and the condition is re-evaluated.

We assigned count the value 1 which is called initialising count. When we first assign
a value to a variable, we say we have initialised the variable.

When we run the program, count has the value 1, and so the condition evaluates to
true and the loop body is executed.

Inside the loop body we increase count by 1, so it has the value 2 after the first
iteration of the loop i.e. the first time we carry out the loop body statements.

The loop condition is then tested again and since count has the value 2, the loop body
will be executed again, increasing count to 3.

We repeat this process until count has the value 5. Now the loop condition evaluates to
false (count is no longer <= 3) and the loop is finished.

When the condition is false i.e. when count reaches 4, we skip the actions specified
by the loop body, and in this example, we execute the final print statement and the
program terminates.

The variable count is used in this example to control how many times we execute the
loop body. Such a variable is called a loop counter.

Each time we execute the loop body (go around the loop), we process one pair of
numbers and add 1 to count.

So after executing the loop 3 times, count will have the value 4. Each time you execute
the loop, the condition is tested. You only execute the loop body if the result is true. So
when count has value 4, we leave the loop (the loop terminates), i.e. we go to the next
statement after the loop body if any.

What would happen if we omitted the statement

count = count + 1

from the loop body?

This is a very common error to make when using counting loops. If we omit the statement
to increment count, the loop will never terminate, as count will always be less than 5.
It is an example of an infinite or endless loop.

An endless loop may be terminated by interrupting the program or switching off the
computer, both of which terminate the program as. To interrupt a program, a combination
of keys is pressed, such as pressing the control key and the C key simultaneously
(denoted by Ctrl/C).

Such an error is a logical or runtime error. These differ from syntax errors because the
program can be executed but produces incorrect results.

42



For this reason, they are more serious than syntax errors. In large programs, it is very
difficult to ensure that there are no logical errors. Thorough testing of programs may
increase our confidence that a program is correct, but such testing on its own, can
never establish the correctness of a program. It is important to bear this fact in mind
and it is worthwhile investigating the area of program correctness.

Example L5.3
Write a program to sum the integers 1 to 99 (i.e. calculate the sum of 1+2+3+...+99) and
display the result.

# sum.py: calculate 1+2+3+.....+99

sum = 0 # contains the sum we wish to compute
i = 1 # the loop counter

while i <= 99:
sum = sum + i
i = i + 1

print(f'\nSum of 1 to 99 is: {sum}\n' )

Executing this program produces as output:

Sum of 1 to 99 is: 4950

The loop body is executed only if the condition (i <= 99) evaluates to true. Since we
have initialised i to 1, the condition evaluates to true and the loop body is executed.

In the loop body, a running total for sum is calculated by adding the value of i to sum. The
variable sum is assigned the value sum + i. The variable i is then increased by 1.

We then test the condition again. The variable i now has the value 2 and the condition (i
<= 99)remains true so we execute the loop body assigning sum the value 3 (1+2) and
increasing i to 3.

Next time around the loop, sum becomes 6 (3+3) and i becomes 4. We test the
condition again and continue in this manner until i eventually reaches the value 100.

When we test the condition in this case, it evaluates to false (i.e. i is greater than 99) and
so the loop body is not executed. Instead we continue at the first statement after the loop
body i.e. the print statement.

43



Example L5.4
Sometimes it is useful to put a print in the loop body so you can see what's happening
and also to get a better understanding of looping.

# sum2.py: calculate the sum of 1 to 9

sum = 0 # contains the sum we wish to compute
i = 1 # the loop counter

while i <= 9:
sum = sum + i
print(f'\nSum = {sum} i = {i}) # display what's happening
i = i + 1

print(f'\nSum of 1 to 9 is: {sum}\n' )

Executing this program produces as output:

Sum = 1 i = 1

Sum = 3 i = 2

Sum = 6 i = 3

Sum = 10 i = 4

Sum = 15 i = 5

Sum = 21 i = 6

Sum = 28 i = 7

Sum = 36 i = 8

Sum = 45 i = 9

Sum of 1 to 9 is: 45

Programmers often use the short variable names i, j, k, and so on, as loop
counters.

Variable Initialisation
In the last two examples it is crucial that the variables count and i are initialised to
appropriate values for the loop to operate correctly. As a general programming principle,
all variables should be initialised to appropriate values, usually at the beginning of a
program.

44



The code for Example L5.1 can be improved. L5.1 does stop after 0 has been input for
the first number, it still reads the second number and adds it to 0 and displays that result.
We want the loop to stop after 0 has been entered as either first or second number. We
also do not want to be asked to enter the second number, if the first one was 0.:

The program below is an improved version:

Example L5.5

# calc6.py: Calculator program to add 2 numbers until 0 entered

n1 = 1 # Assign non-zero so that we can start the loop
n2 = 1

while (n1 != 0) and (n2 != 0) :
n1 = float(input('\nEnter first number [0 to quit]: '))
if ( n1 != 0 ):

n2 = float(input('\nEnter second number [0 to quit]: '))
sum = n1 + n2
if (n2 != 0):

print(f'\nThe sum of {n1} and {n2} is {sum} \n\n')

print ('\n\nFinished summing\n')

This program runs as follows:

Enter first number: 3

Enter second number: 3

The sum of 3.0 and 3.0 is 6.0

Enter first number: 0

Finished summing

And again

Enter first number: 3

Enter second number: 0

Finished summing

As you can see from the above program, you can use any statement in the loop body
including more conditionals. This time, once we read the 1st number, we check if it is 0
and only if it is not 0, will we read the 2nd number. We only calculate the sum and display
the result if the second number is not 0.

45



Example L5.6

Write a program to convert dollars to kyats using an exchange rate of 1 dollar = 2100
kyats. Allow the user to keep entering vales until 0 is entered to quit.

# convert_dollars.py: convert dollars to kyats until 0 entered

dollars = float(input('\nDollars [0 to quit]: '))

while ( dollars != 0 ):
kyats = dollars * 2100
print(f'{dollars} dollars = {kyats:.2f} kyats ' )
dollars = float(input('\nDollars [0 to quit]: '))

print(f'\nFinished converting\n')

L5.6 outputs:

Dollars [0 to quit]: 7
7.0 dollars = 14700.0 kyats

Dollars [0 to quit]: 0

Finished converting

Debugging with Loops

As mentioned earlier, if you have difficulty understanding loops, it is a good idea when
you implement any of the loop programs to put a print statement in the loop body, so
that you can see how what is happening as the loop is repeated. For example in L5.2 the
following print could be inserted in the loop body:

print (f'\ncount = {count}') # display count as loop runs

This is also a useful debugging technique. Debugging is the term used for finding and
correcting errors (bugs) in your program.

By placing print statements in your code, you can trace (follow) the execution of your
program, inspecting the values of variables and checking if loops are executed the
correct number of times.

A print in the action part of an if statement allows you verify that the action was indeed
carried out. When your program is working correctly, these debugging print statements
are removed.

46



The break statement
Sometimes we wish to terminate a while loop without having to wait for the lop condition
to become false. We use the break statement to do this. It stops the loop and the
program continues at the first statement after the loop body the loop.

Example L5.7
A guessing game program. The user has to try to guess a "secret" word built into the
program.

# guess2.py: Guess the secret word

secret = 'blue'
guess = ' '

while (guess != secret) and (guess != 'quit'):

guess = input('Guess the secret word:[quit to finish] ')

if guess == 'quit':
break # Exit the loop

if guess != secret:
print(f'\nWrong guess: {guess}')

else:
print(f'\nWell done !') # end of loop

if (guess == 'quit'):
print(f'\nThe secret word was: {secret}')

If the user enters 'quit' then the break statement terminates the loop and the first
statement after the loop body is executed i.e. the print to display the secret word.
Note: The loop in this program can terminate in two ways. It will terminate if the loop
condition is false (for example the user guesses the word) OR if the user enters 'quit'.

This means that when the loop terminates, we need to check if it was because the user
entered 'quit'. And display the appropriate message in that case.

Running guess2.py:

Guess the secret word: man
Wrong guess: man
Guess the secret word: dog
Wrong guess: dog
Guess the secret word: quit
The secret word was: blue

Running guess3.py:
Guess the secret word: black
Wrong guess: black
Guess the secret word: blue
Well done !

47



Example L5.8
A guessing game program with limited number of guesses. The user has to guess a
"secret" word built into the program but has only 3 chances to guess it.

Algorithm for this guessing game program

We explained the concept of an algorithm earlier. It is the set of set of steps to solve a
problem. We usually write algorithms in what is called pseudo code. This is a cross
between English and programming language statements. There is no defined version of
pseudo code, so you can make up your own version.

In my pseudo code, I use the word repeat until … end repeat for a loop. It can be
read as "repeat the statements from repeat to end repeat while the condition is true.
In the example below the loop body is highlighted in blue.

Because we are now using conditionals (if and while) our programs are becoming
longer and more complex. So it is a good idea to develop an algorithm for your program
before writing the actual code.

# Guessing game algorithm

Set number of guesses to 1
Set guess to blank
Set the secret word in the program

Repeat until guess is correct, or quit or number guess > 3
Ask the user to guess the word or quit
If guess is 'quit'

Exit the loop
If guess is incorrect then

Display error message
Add 1 to number of guesses

Else
Display Correct guess message

End repeat

If guess is quit
Display quit message

Else
Display too many guesses message

Program terminates

48



We now implement the algorithm in Python.

# L5.8: guess3.py: Guess the secret word in 3 guesses

secret = 'blue'
guess = ' '
num_g = 1 # number of guesses

while (guess != secret) and (guess != 'quit') and (num_g < 4):
guess = input('Guess the secret word:[quit to finish] ')
if guess == 'quit':

break # Exit the loop
if guess != secret:

print(f'\nWrong guess: {guess}')
num_g = num_g + 1

else:
print(f'\nWell done !') # end of loop

if (guess == 'quit'):
print(f'\nThe secret word was: {secret}')

else:
print(f'\n Sorry you have used 3 guesses')
print(f'\nThe secret word was: {secret}')

Running guess3.py:

Guess the secret word: man
Wrong guess: man
Guess the secret word: dog
Wrong guess: dog
Guess the secret word: red
Sorry you have used 3 guesses')

The secret word was: blue

Running guess3.py:
Guess the secret word: black
Wrong guess: black
Guess the secret word: blue
Well done !

49



Nested Loops
A loop may contain as part of its loop body any statement including another loop. A loop
inside the body of a loop is called an inner loop or nested loop. The nested loop may in
turn contain a loop as part of its loop body and so on.

Example 5.9: Write a program to read in the marks for a group students and display
the average mark for each student based on the entered marks. There are 3 grades for
each student. The programs allows the user enter as many students as they wish,
finishing when the name 'quit' is entered.

Algorithm

Read name
Repeat until name is quit

Set sum to 0
Set number of marks to 1
Repeat until number of marks > 3 # nested loop

Read mark
Add mark to sum
Add 1 to number of marks

End repeat # end of nested loop

Compute average - = sum / 3
Display Average mark for name
Read next name

End repeat # end of outer loop
Display finished message

# L5.9 average.py: Compute average nark for students
# There are 3 marks for each student

name = input('\nEnter name: [quit] :')

while ( name != 'quit' ):
nm = 1 # number of marks entered
sum = 0.0
while ( nm <= 3 ):

mark = float(input(f'Enter mark {nm}: '))
sum = sum + mark
nm = nm + 1 #end of inner loop

average = sum / 3

print(f'Average mark for {name} : {average:.2f}' )

name = input('\nEnter name: [quit] : ')
# end of outer loop

print(f'\nFinished \n')

L5.9 runs as follows
50



Enter name: [quit] : Joe
Enter mark 1: 50
Enter mark 2: 60
Enter mark 3: 70
Average mark for Joe : 60.00

Enter name: [quit] : Mary
Enter mark 1: 70
Enter mark 2: 80
Enter mark 3: 85
Average mark for Mary : 78.33

Enter name: [quit] : quit

Finished

Note the use of an f-string in the input statement:

mark = float(input(f'Enter mark {nm}: '))

This allows us display which of the three marks is being entered (1, 2, or 3) as shown in
the output above.

Example 5.10:
Use a nested loop to display triangle made of stars (*). Display 4 lines so that:

1 star is displayed on line 1;
2 stars displayed on line 2,
3 stars displayed on line 3 and
4 stars displayed on line 4.

The output appears as follows which is the shape of a triangle made of stars:

*
**
***
****

51



# tri.py: displays triangle composed of *'s
# This program does NOT work

num_lines = 1

while num_lines <= 4:
num_stars = 1
while num_stars <= num_lines: # inner loop

print(f'*')
num_stars = num_stars + 1 #end inner loop

print('\n') # start new line
num_lines = num_lines + 1 # end outer loop

The inner loop displays the correct number of * characters on each line. The outer loop
controls the number of lines displayed.

However, this program does not work as intended. It displays the stars on separate lines:

*

*
*

*
*
*

*
*
*
*

This is because the print function adds the newline character at the end of its output.
To stop print doing this, we add a new element called end to print, as follows:

print(f'*', end = '') # instructs print not to output newline

There is no space between the quotes in end = ''

We use this version of print in the L5.11 below and we get the following output:

*

**

***

****

52



Example 5.11
This is the amended version of L5.11 to display a triangle.

# tri2.py: displays triangle composed of *'s

num_lines = 1

while num_lines <= 4:
num_stars = 1
while num_stars <= num_lines: # inner loop

print(f'*', end = '')
num_stars = num_stars + 1 #end inner loop

print('\n') # start new line
num_lines = num_lines + 1 # end outer loop

53



while loop summary

We use the while loop to repat statements. From the examples above we can see two
common ways it is used

1. Repeat statements until user enters data to indicate they are finished (e.g. 'quit',
0)

name = input('\nEnter name: [quit] :')

while ( name != 'quit' ):
statement1
statement2
# as many statements as you wish

name = input('\nEnter name: [quit] : ')

# rest of program after loop

2. Repeat statements a fixed number of times – counting loop.

i = 0 # counter
n = 10 # number of iterations, can be read in etc

while ( i < n ):
statement1
statement2
# as many statements as you wish
i = i + 1 #increase loop counter

# rest of program after loop

We often count from 0 in programming. Thus to repeat the above loop 10 times the
counter i has the value 0, 1, 2, ,3, 4, 5, 6, 7, 8, and 9 as we go around the loop. When i
becomes 10, the loop terminates because 0 to 9 is 10 iterations.

54



Lesson 5 Exercises
1. Will the following loop finish ?

j = 0
while j < 10:

print(f'j = {j}')
j = j + 1

2. Display the text 'Hello World' on 5 separate lines using a while loop.

3. Write a program that uses a while loop to display the numbers 1 to 10 on separate
lines.

4. Write a program that uses a while loop to sum the numbers: 2, 4, 6, 8, 10, 12,
14,16,18 and 20. The program then displays the sum of the numbers. [Hint: The
loop counter is increased in increments of 2].

5. Write a program that reads numbers entered by the user, until the user enters 0.
The program computes the sum and average of the numbers. The program then
displays the sum and average.

6. Write a program to show a menu of areas and to calculate the area chosen by the
user. After each area has been calculated, the program displays the menu again.
The program continues until the user chooses the 'x' option. The output is shown
in italics below

Choose one of the following options:

s for the area of a square
c for the area of a circle
r for the area of a rectangle

x Exit program

Enter your choice: r
Enter length: 4
Enter breadth: 5

Area of rectangle is: 20.0

Compute Area of one of the following:

s for the area of a square
c for the area of a circle
r for the area of a rectangle

Enter your choice: x

Area calculation program finished

55



Lesson 5 Assignments
1. Write a program that prompts the user to enter their exam score (out of 100). If the

score is 90 or above, display 'You got an A!' If the score is between 80 and 89,
display 'You got a B.' If the score is between 70 and 79, display 'You got a C.
The programs continues the above process until the user enters a score of 0

2. Write a program to keep calculating how much someone gets paid per week until the
user enters 'quit'. The program asks the user to enter the number of hours worked and
the rate per hour and then displays the total pay.
The program must check that the number of hours worked does not exceed 100 and
that the rate per hour does not exceed 25.

3. Modify Example L5.9 to allow the user enter as many grades as they wish for each
student, finishing when the mark 0 is entered for that student. It then displays the
average mark for that student as in L5.9. The programs allows the user enter
marks for as many students as they wish, finishing when the name 'quit' is
entered.

4. Write a program to display 6 lines with
5 Spaces followed by 1 star on line 1
4 spaces followed by 2 stars on line 2
3 spaces followed by 3 stars on line 3
2 spaces followed by 4 stars on line 4
1 spaces followed by 5 stars on line 5
0 spaces followed by 6 stars on line 6

The output should appear as follows:

*
**
***

****
*****
******

5. Modify program 3 above to output a what looks like a “tree” as follows

*
***

*******
*********
***********

56



Appendix 1: Solutions

Lesson 1 Solutions

1. What is the output of the following print statement?

print( 'Have a great day!')

c. Have a great day!

a. What is the output of the following statements?
print('Hi there!')
print('How are you doing?')

Hi there!
How are you doing?

b. Write a program that prints a message saying

I love Python!

print('I love Python! ')

c. Write a program that prints a message saying your name and your age, e.g.

My name is Colin. I am 20 years old!

print('My name is Colin. I am 20 years old! ')

d. Write a program to display the message 'Welcome to Python' three times, on
separate lines using three print statements.

print('Welcome to Python! ')

print('Welcome to Python! ')

print('Welcome to Python! ')

e. Write a program to display the message 'Python is awesome!' two times, on
separate lines, using only one print statement and \n

57



print('Python is awesome!\n Python is awesome!\n ')

f. What are the syntax errors in the following statements:

print( 'Hello ! Goodbye! )- missing closing '
print( Hello ! Goodbye!' ) – missing opening '
print( 'Hello ! Goodbye!' - missing closing )
print 'Hello ! Goodbye!' ). – missing opening (
prlnt( 'Hello ! Goodbye!' ) – misspelt print

Lesson 2 Solutions

1. Valid or invalid variable names
a. Is the variable name TotalMarks correct - Yes
b. Is the variable name number-of-students correct? NO – cannot use –in variable
name
c. Is the variable name firstName correct? Yes
d. Is the variable name myVar1 correct? Yes
e. Is the variable name customerName correct? Yes
f. Is the variable name productPrice correct? Yes
g. Is the variable name 3rdStudent correct? NO – cannot start with a digit
h. Is the variable name isAvailable? correct? Yes
i. Is the variable name total-sales correct? NO – cannot use –in variable name
j. Is the variable name customer_email correct? Yes

2. Write a program that asks the user for their name using input. Store the name in
a variable and display a personalized greeting using the variable.

name = input('Enter your name: ')

print('Hello, how are you ', name )

3. What is the output, if any, of the following program:

# print('hello\n')
# print('bye bye\n')

No output because any text following # is treated as a comment and ignored by
Python

4. Write a program that prompts the user to enter their favourite colour and favourite
animal using the input. Store these values in separate variables and display them
in a sentence :

f_colour = input('Enter your favourite colour: ')
f_animal = input('Enter your favourite animal: ')

58



print('My fav colour is ', f_colour, 'and my fav animal is',
f_animal )

Lesson 3 Solutions

Q1:

a. The data type of the variable 'age' is integer.

b. The data type of the variable 'name' is string.

c. The data type of the variable 'price' is float.

d. The data type of the variable 'is_valid' is boolean.

e. The data type of the variable 'quantity' is integer.

f. The data type of the variable 'message' is string.

g. The data type of the variable 'discount' is float.

2. Write a program to convert 10 dollars to kyats using an exchange rate of 1
dollar = 2100 kyats.

# convert 10 dollars to kyats

dollars = 10
kyats = dollars * 2100
print(f '{dollars} dollars = {kyats} kyats ' )

59



9. Write a program that takes a single length (a float) and calculates the following:
• The area of a square with side of that length. (length * length)
• The volume of a cube with side of that length. (length ** 3)
• The area of a circle with diameter of that length (3.14 * (length/2)**2) )

# calculate area of square, volume of cube and area of circle

length = float(input('Enter length: '))

area_of_square = length * length
cube_volume = length ** 3
area_of_circle = 3.14 * ((length / 2)**2)
print(f' Area of square: {area_of_square:.2f}' )
print(f' Volume of cube: {cube_volume:.2f}' )
print(f' Area of circle: {area_of_circle:.2f}' )

7. Write a program that takes an amount (a float), and calculates the tax due
according to a tax rate of 20%

# calculate tax due at 20%

amount = float(input('Enter amount for tax at 20%: '))

tax = amount * 0.20
print(f'Tax: {tax:.2f}' )

8. Write a program to simulate a cash register for a single purchase. The program
reads the unit cost of an item and the numbers of items purchased. The program
displays the total cost for that number of units:

Enter unit cost: 5
Enter number of units: 6

Total cost of 6 units: 30.00

# calculate total cost as number of unit * unit cost

unit_cost = float(input('Enter unit cost: '))

number_units = float(input('Enter number of units: '))

total = unit_cost * number_units

print(f'\nTotal cost of {number_units} units: {total:.2f}')

60



Lesson 4 Solutions
1. What are the 6 conditions that we can use to compare two numbers?

See Lesson 4 in Handbook

2. Write a program that asks the user to enter their exam score. If the score is greater
than or equal to 60, display 'Congratulations! You passed the exam'. Otherwise,
display 'Sorry, you did not pass the exam'.
score = int(input('Enter your exam score: '))
if score >= 60:

print('Congratulations! You passed the exam.')
else:

print('Sorry, you did not pass the exam.')

3. Write a program that asks the user to enter a password. If the password is
'password123', display 'Access granted' Otherwise, display 'Access denied'

password = input('Enter your password: ')
if password == 'password123':

print('Access granted')
else:

print('Access denied')
4. Write a program that prompts the user to enter their age and whether they have a

driver's license ('yes' or 'no). If the person is 18 or older and has a driver's license,
display 'You can legally drive'.
If the person is 18 or older but does not have a driver's license, display 'You can
apply for a driver's license'.
If the person is under 18, display 'You are not old enough to drive'.
# Prompt the user to enter their age

age = int (input('Enter your age: '))

# Prompt whether they have a driver's license

has_license = input('Do you have a drivers license? [yes/no]:
')

# Check the driving eligibility

if (age >= 18) and (has_license == 'yes'):
print('You can legally drive.')

if (age >= 18) and (has_license == 'no'):
print('You can apply for a drivers licence')

if (age < 18):
print ('You are not old enough to drive.')

61



5. Write a program to simulate a cash register for a single purchase. The program
should read the unit cost (real number) of an item and the numbers of items
purchased. The program should display the total cost for the items. If the unit cost
is greater than 10000, the program should display an error message, 'Invalid unit
cost – too large.'
If the number of units is 0 or a negative number it should display an error
message, 'Number of units must be greater than zero'.

# cash.py: Calculate and display bill for items purchased

unit_cost = float(input('\n Unit cost: '))

if unit_cost > 10000:
print(f'\n Unit cost {unit_cost} cannot exceed 10000: ')

else:

num_units = float(input('\n Number of units: '))

if num_units <= 0:
print(f'\n Num of units {num_units} must be > 0')

else:

cost = num_units * unit_cost
print(f'\n Total cost: {cost} ')

6. Write a program to show a menu of areas to be calculated and to calculate the
area chosen by the user.

# calculate areas giving user options in a menu

print(f' s for the area of a square \n')
print(f' c for the area of a circle \n')
print(f' r for the area of a rectangle \n')

shape = input('\n Enter you choice [s, c, r] ')

if ( shape == 's') :
length = float(input(' Enter length: '))
area_of_square = length * length
print(f' Area of square: {area_of_square:.2f}' )

if (shape == 'c'):
radius = float(input(' Enter radius: '))
area_of_circle = 3.14 * radius ** 2
print(f' Area of circle: {area_of_circle:.2f}' )

if (shape == 'r'):
length = float(input(' Enter length: '))
breadth = float(input(' Enter length: '))
area_of_rectangle = length * breadth
print(f' Area of rectangle: {area_of_rectangle:.2f}' )

62



7. Write a program to read two numbers and display which is the largest and smallest
of the numbers entered.

# Find largest and smallest of two numbers

n1 = float(input('First number: '))

n2 = float(input('Second number: '))

if n1 > n2 :
large = n1
small = n2

if n1 < n2 :
large = n2
small = n1

if n1 == n2 :
print(f' First number {n1} = Second number {n2} \n')

else :
print(f' Largest is {large} and smallest is {small} \n')

63



Lesson 5 Solutions
1. Will the following loop finish ?

j = 0
while j < 10:

print(f'j = {j}')
j = j + 1

No! The loop body will continue printing the message, because j is not increased
in the loop body.

j = 0
j = 0

The statement j = j + 1 is not indented, so it is not part of the loop body. This is
a common error.

2. Display the text 'Hello World' on 5 separate lines using a while loop.

j = 0
while j < 5:

print(f'Hello World')
j = j + 1

3. Write a program that uses a while loop to display the numbers 1 to 10 on separate
lines.
j = 0
while j < 11:

print(f'{j}')
j = j + 1

4. Write a program that uses a while loop to sum the numbers: 2, 4, 6, 8, 10, 12,
14,16,18 and 20. The program then displays the sum of the numbers. [Hint: The
loop counter is increased in increments of 2].

sum = 0
j = 2
while j < 21:

sum = sum + j
j = j + 2

print(f'Sum is {sum}')

5. Write a program that reads numbers entered by the user, until the user enters 0.
The program computes the sum and average of the numbers. The program then
displays the sum and average.
sum = 0
count = 0 # Number of numbers summed
n = float(input('Enter a number: '))
while n != 0:

sum = sum + n
count = county + 1

64



n = float(input('Enter a number: '))

if count > 0:
average = sum / count
print(f'Sum is {sum} and Average is {average}')

Note: We need to test count > 0 because if the user enters 0 as the first number we
do not display sum and average.
More importantly, it is an error in any programming language to divide a number by
0. If we try to divide a number by 0 the program will crash!

6. Write a program to show a menu of areas and to calculate the area chosen by the
user. After each area has been calculated, the program displays the menu again.
The program continues until the user chooses the 'x' option.

# Menu driven program to calculate areas

option = ''
while option != 'x':

print(f'\n\n\nChoose one of the following options:\n')
print(f's for the area of a square\n')
print(f'c for the area of a circle\n')
print(f'r for the area of a rectangle\n\n')
print(f'x Exit program\n')

option = input('Enter your choice: [s, c, r, x] ')
if option == 'x':

break

if option == 's':
length = float(input('Enter length: '))
area_of_square = length * length
print(f'Area of square: {area_of_square:.2f}' )

if option == 'c':
radius = float(input('Enter radius: '))
area_of_circle = 3.14 * ( radius **2)
print(f'Area of circle: {area_of_circle:.2f}' )

if option == 'r':
length = float(input('Enter length: '))
breadth = float(input('Enter breadth: '))
area_of_rect= length * breadth
print(f'Area of rect: {area_of_rect:.2f}' )

65


