
Variable Scope & Lifetime

Variable scope and lifetime are important concepts in programming languages,

including Python. They determine where and for how long a variable can be accessed

and used in your code. Let's explore these concepts in detail:

 Variable Scope:
● Variable scope refers to the region of code where a variable is visible and

accessible.
● In Python, variables can have one of the following scopes:

● Global Scope: Variables defined outside of any function or class
have global scope. They can be accessed from anywhere in the
code.

● Local Scope: Variables defined within a function have local scope.
They can only be accessed within that function.

● Enclosing (Nonlocal) Scope: Variables defined in an enclosing
function have enclosing scope. They can be accessed by nested
functions but not from outside the enclosing function.

● Python follows the LEGB (Local, Enclosing, Global, Built-in) rule to resolve
variable names.

 Lifetime of Variables:
● The lifetime of a variable is the duration for which it exists in memory

during program execution.
● In Python, the lifetime of variables depends on their scope:

● Global Variables: Exist until the program terminates or until
explicitly deleted.

● Local Variables: Exist only within the function where they are
defined and are destroyed when the function returns.

● Enclosing Variables: Exist as long as the enclosing function is
executing and are destroyed when the function completes
execution.

● Memory occupied by variables is automatically reclaimed by Python's
garbage collector when they go out of scope.

Let's illustrate variable scope and lifetime with an example:

Global variable

global_var = 10

def outer_function():

Enclosing variable

enclosing_var = 20

def inner_function():

Local variable

local_var = 30

print("Inner function:", global_var, enclosing_var, local_var)

inner_function()

print("Outer function:", global_var, enclosing_var)

outer_function()

print("Global scope:", global_var)

In this example:

● global_var is a global variable accessible from all parts of the code.
● enclosing_var is an enclosing variable accessible within outer_function and its

nested functions.
● local_var is a local variable accessible only within inner_function.
● Each variable has a different scope and lifetime based on where it is defined.

Understanding variable scope and lifetime is essential for writing correct and

maintainable code in Python. It helps prevent naming conflicts, manage memory

efficiently, and ensure proper encapsulation of data.

Exercises and Answers for Variable Scope & Lifetime

Exercise 1:

Define a global variable called global_var with an initial value of 10. Write a function

called modify_global_var that tries to modify the value of global_var by assigning it a

new value of 20. Inside the function, print the value of global_var before and after the

assignment. Finally, call the modify_global_var function and observe the output.

Answer 1:

global_var = 10

def modify_global_var():

global global_var

print("Before modification:", global_var)

global_var = 20

print("After modification:", global_var)

Test the function

modify_global_var()

print("Global variable outside function:", global_var)

Exercise 2:

Write a function called outer_function that defines a local variable called outer_var

with an initial value of 10. Inside outer_function, define another function called

inner_function that tries to access the outer_var variable. Print the value of

outer_var from within inner_function. Finally, call the outer_function and observe

the output.

Answer 2:

def outer_function():

outer_var = 10

def inner_function():

print("Inner function accessing outer variable:", outer_var)

inner_function()

Test the function

outer_function()

Exercise 3:

Create a function called nested_functions that defines a variable called

enclosing_var with an initial value of 5. Inside nested_functions, define two nested

functions: first_inner_function and second_inner_function. Each inner function

should try to access the enclosing_var variable and print its value. Finally, call the

nested_functions function and observe the output.

Answer 3:

def nested_functions():

enclosing_var = 5

def first_inner_function():

print("First inner function accessing enclosing variable:", enclosing_var)

def second_inner_function():

print("Second inner function accessing enclosing variable:", enclosing_var)

first_inner_function()

second_inner_function()

Test the function

nested_functions()

