
Decorators

Decorators are functions that modify or enhance the behavior of other functions
or methods without changing their source code directly. Decorators use the
@decorator_name syntax before a function definition to apply the decorator to that
function. Decorators are commonly used for tasks such as logging, caching,
authentication, and more.

Example:

def my_decorator(func):

def wrapper(*args, **kwargs):

print("Before function call")

result = func(*args, **kwargs)

print("After function call")

return result

return wrapper

@my_decorator

def my_function():

print("Inside function")

my_function()

In this example, my_decorator is a decorator that adds behavior before and after
the function call.

The workflow of a decorator involves several steps that occur when a decorated
function is defined and called. Here's a breakdown of the decorator workflow in Python:

​ Decorator Definition:
● A decorator is defined as a regular Python function that takes another

function as its argument and returns a new function.
● Inside the decorator function, a wrapper function is typically defined to

modify or enhance the behavior of the original function.

def my_decorator(func):

def wrapper(*args, **kwargs):

Add functionality before calling the original function

print("Before function call")

result = func(*args, **kwargs)

Add functionality after calling the original function

print("After function call")

return result

return wrapper

​ Applying the Decorator:
● To apply the decorator to a function, use the @decorator_name syntax

before the function definition.
● This syntax tells Python to pass the function to the decorator and reassign

the function to the result returned by the decorator.
@my_decorator

def my_function():

print("Inside function")

​ Function Call:
● When the decorated function is called, Python executes the wrapper

function instead of the original function.
● Inside the wrapper function, the original function is called, and any

additional functionality defined in the decorator is executed.

my_function()

​ Execution Flow:
● The execution flow proceeds as follows:

● When my_function() is called, Python executes wrapper()

instead.
● Inside wrapper(), any code defined before the call to the original

function is executed (e.g., printing "Before function call").
● The original function (my_function) is called with the provided

arguments.
● Any additional functionality defined after the call to the original

function is executed (e.g., printing "After function call").
● The result of the original function call is returned to the caller.

In summary, the workflow of a decorator involves defining a decorator function,
applying it to a function using the @ syntax, and executing the wrapper function instead
of the original function when called. The wrapper function modifies or enhances the

behavior of the original function as defined in the decorator, and the result is returned to
the caller.

Exercises and Answers for Decorators

Exercise 1:
Create a decorator called debug that prints the name of the function being called along
with its arguments and return value. Apply the debug decorator to a function called add

that adds two numbers together. Test the add function with different arguments and
observe the debug output.

Answer 1:
def debug(func):

def wrapper(*args, **kwargs):

print(f"Calling {func.__name__} with args: {args}, kwargs: {kwargs}")

result = func(*args, **kwargs)

print(f"{func.__name__} returned: {result}")

return result

return wrapper

@debug

def add(x, y):

return x + y

Test the function

result = add(3, 5)

print("Result:", result)

Exercise 2:
Write a decorator called timer that measures the execution time of a function. Apply the
timer decorator to a function called fibonacci that calculates the nth Fibonacci
number recursively. Test the fibonacci function with different values of n and observe
the execution time.

Answer 2:
import time

def timer(func):

def wrapper(*args, **kwargs):

start_time = time.time()

result = func(*args, **kwargs)

end_time = time.time()

print(f"{func.__name__} executed in {end_time - start_time:.6f} seconds")

return result

return wrapper

@timer

def fibonacci(n):

if n <= 1:

return n

else:

return fibonacci(n-1) + fibonacci(n-2)

Test the function

result = fibonacci(10)

print("Result:", result)

