
Module 2: Understanding Dictionaries

Introduction

Dictionaries in Python are versatile data structures used to store collections of items.
Unlike sequences such as lists or tuples, dictionaries are unordered collections of
key-value pairs, offering fast lookup and retrieval operations. This document provides an
overview of dictionary basics, common operations, and examples to illustrate their
usage.

Basics

 Definition: A dictionary in Python is defined using curly braces {}. Each item in the

dictionary consists of a key-value pair separated by a colon :.

my_dict = {'key1': 'value1', 'key2': 'value2'}

 Accessing Values: Values in a dictionary are accessed by specifying their corresponding

keys in square brackets [].

print(my_dict['key1']) # Output: value1

 Dictionary Keys: Keys in a dictionary must be unique and immutable types such as
strings, numbers, or tuples. Values can be of any data type.

 



 Dictionary Operations

Adding or Updating Items: Use square brackets [] with the key to add or update items in

a dictionary.

my_dict['new_key'] = 'new_value' # Adding a new item

my_dict['key1'] = 'updated_value' # Updating an existing item

Removing Items: Use the del keyword or the pop() method to remove items from a

dictionary.

del my_dict['key1'] # Remove a specific item

value = my_dict.pop('key2') # Remove and return the value of a specific item

Checking for Key Existence: Use the in keyword to check if a key exists in a dictionary.

if 'key1' in my_dict:

print("Key exists!")

Example:

Let's consider a dictionary representing information about a person:
person = {

'name': 'John Doe',

'age': 30,

'city': 'New York'

}

Operations
 Accessing values:

print(person['name']) # Output: John Doe

 Adding or updating items:

person['occupation'] = 'Engineer' # Adding a new item

person['age'] = 35 # Updating an existing item



 Removing items:

del person['city'] # Removing a specific item

occupation = person.pop('occupation') # Removing and returning the value of a

specific item

 Checking for key existence:

if 'age' in person:

print("Age exists!")

Conclusion

Dictionaries are powerful and flexible data structures in Python, offering efficient
storage and retrieval of key-value pairs. Understanding their basics and common
operations is essential for effective data manipulation and algorithm design in Python.



Exercises and Answers for Dictionaries
Exercise 1:
Create a dictionary named student representing a student's information. Include keys
for "name", "age", "grade", and "subjects". The value of "subjects" should be a list
of subjects the student is taking.

Answer 1:
student = {

"name": "Wun",

"age": 18,

"grade": 12,

"subjects": ["Math", "Science", "English"]

}

Exercise 2:
Add a new subject "History" to the list of subjects in the student dictionary.

Answer 2:
student["subjects"].append("History")

Exercise 3:
Remove the "grade" key-value pair from the student dictionary.

Answer 3:
del student["grade"]

Exercise 4:
Check if the "age" key exists in the student dictionary.

Answer 4:
if "age" in student:

print("Age exists!")

Exercise 5:
Update the value of the "name" key in the student dictionary to "Bob".



Answer 5:
student["name"] = "Du"


