
Lesson 6: Strings, Lists and for loop

1

A string is a sequence of characters.

To create a string in Python you can assign a string to a variable as in:

primary_colours = 'red orange yellow green blue indigo violet'

colours = 'pink, white, black, brown, grey'

s = 'hello’

We can access any element of a string, by using its position in the string.

This is called its index or subscript.
We put the index in [] brackets after the name of the string.

2

0 1 2 3 4

h e l l o

A string can be visualized as shown below for a string s:

 s = 'hello '

s

index

We can access any character in the string s using its index:

S[0] is 'h'

S[1] is 'e'

S[4] is 'o'

The first character of a string is always at index 0
3

We can also use input to create a string:

address = input('\nEnter your address on 1 line')

String Length - len

The len function gives us the length of a string or list e.g.

l = len('abcd')

gives l the value 4.

s = 'abcdef'
lens = len(s) # lens = 6 in this case
print (f'length of s: {lens}\n’)

outputs
length of s: 6

Note: Because we start strings at index 0, the last character in any string is always at
index (length_of_string – 1).

4

Example L6.1
Write a program to output the characters in a string on separate
lines.

str.py: Output each characters on a newline

string = 'abc'

length = len(string) # 3 in this case

i = 0
while (i < length):
 print(string[i]) # displays elements 0, 1 and 2

 i = i + 1

Output
a
b
c

5

Concatenating Strings
We use the + operator to add one string on to the end of another string –

this is called concatenation.

s1 = 'abc'

d1 = '456'

s2 = s1 + d1 # s2 is 'abc456'

print (s2)

print (s1 + ' ' + d1)

Output

abc456

abc 456

6

Example L6.2
Write a program to read a name and 3 lines of address. The program displays the
name and 3 lines of address on a single line.

name = input('Enter name: ')

addr1 = input('Enter Address line 1:')
addr2 = input('Enter Address line 2:')

addr3 = input('Enter Address line 3:')

print (f'\n' + name + ' ' + addr1 + ' ' + addr2 + ' ' +
addr3)

Output

Enter name: Super Man
Enter Address line 1: Time Square
Enter Address line 2: New York
Enter Address line 3: USA

Super Man Time Square New York USA
7

Other operations on Strings: upper and lower

Python allows you perform many other operations on strings and we only look at a
few of them in this Handbook. We use a different mechanism to carry out these
operations – it is called using methods from a form of programming called object-
oriented programming.

In this form of programming, a string is regarded as an object and to carry out an
operation on an object you perform a method on the object.

For example, we often want to convert all the alphabetic characters (A to Z, a to z) in
a string to uppercase (A to Z) or to lowercase (a to z).

Python provides the methods upper and lower to do these conversions. For
example, the code below will convert any uppercase characters in the string s to
lowercase and assign the new string to the variable t:

8

Example L6.3

s = 'ABC def 123 +^*'

t = s.lower()

print (f' s is: {s} \n')

print (f' t is: {t} \n')

Output:

s is: ABC def 123 +^*

t is: abc def 123 +^*

The statement t = s.lower() converts all uppercase letters in s to lowercase and stores
them in t.

Note: The string s is unchanged. You cannot change the elements in a string in Python we
say that strings are immutable in Python e.g. you cannot use s[0] = 'x' to change an
element of a string.

9

Example L6.4: Convert to uppercase

t = s.upper() converts all lowercase letters in s to uppercase and stores them in t

s = 'ABC def 123 +^*'

t = s.upper()

print (f' s is: {s} \n')

print (f' t is: {t} \n')

Output:

s is: ABC def 123 +^*

t is: ABC DEF 123 +^*

10

Example L6.4: Write a guessing game program to ignore the case of the user guess
secret = 'Blue'

guess = ' '

num_chances = 1

secret = secret.lower() # convert to lowercase

while (guess != secret) and (num_chances <= 3) :

 guess = input('Guess the secret word: ')

 guess = guess.lower() # convert to lowercase

 if guess != secret:

 print('\nWrong guess: ', guess)

 num_chances = num_chances + 1

 else:

 print('Well done !')

if num_chances > 3:

 print('Sorry you have used all of your guesses')

 print('The secret word was: ', secret)

Output:

Guess the secret word: BLUE

Well done ! 11

Other String operations: in

The in operator allows us check if a string (1 or more characters) is part of another string. The condition
e in str is True if e is contained in the str and False otherwise:

str = 'bread gums blue black'
if 'gum' in str:
 print(f'Yes gum is in {str}')
if 'k' in str:

 print(f'k is in {str}')
if 'car' in str:
 print('Yes car in string')

else:
 print('Car not in string')

Output
Yes gum is in bread gums blue black
Yes k is in bread gums blue black
Car not in bread gums blue black

12

More String operations: isupper, islower, isdigit

The method isupper returns True if the string is all uppercase (A to Z).

The method islower returns True if the string is all lowercase (a to z).

Numbers, symbols and spaces are ignored by isupper and islower - only alphabet characters are checked.

The method isdigit returns true if the string is all digits (0 to 9).

The 3 methods above can be applied to single character or multi character strings.

a ='Hello World!'
b = 'MAN. UTD’
c = '456’
d = ‘hello world!'

print(a.isupper())
print(b.isupper())
print(c.isdigit())
print(d.lower())

Output:
False
True
True
True 13

Write a program to read text from the user and display whether there is an uppercase character in the
text.

text.py: Check for an uppercase character in the input

text = input('Enter any string: [Q/q to quit] ')

while text != 'q' and text != 'Q':
 found = False
 i = 0
 while (i < len (text)) :
 if text[i].isupper() : # check for uppercase character
 found = True # found an uppercase character
 break # leave loop if found uppercase
 else:
 i = i + 1

 if found == True:
 print (f'Uppercase found in: {text} ')
 else:
 print(f'No uppercase found in {text}’)

 text = input('Enter any string: [Q/q to quit] ')

14

Output:

Enter any string: [Q/q to quit] asdf

No uppercase found in asdf

Enter any string: [Q/q to quit] Abc123

Uppercase found in: Abc123

Enter any string: [Q/q to quit] q

15

Lists

We encounter examples of lists in our daily lives:

shopping list of things to buy
list of students in a class
list of employees in a company

Python provides us with a list data type to handle lists.
A data type refers to the type of value a variable has. We have already used the data types
integers, floats and strings in our programs.

It is easy to create and use lists in Python. We give the list a name and we access the items
in the list using an index (subscript) in the same way that we used an index in accessing the
elements of a string.

16

List Examples

A list of items we wish to buy in the shops.

shop_list = ['bread', 'milk', 'coffee', 'sugar']

A list of student names in a class.

student = ['Bat Man', 'Super Man', 'Wonder Woman', 'Green Hulk']

A list of student names with their grades in three subjects (Maths, Science and History).

grades = ['Bat Man', 'Maths', 60, 'Science', 70, 'History', 55,
'Super Man', 'Maths', 90, 'Science', 950, 'History', 80]

A list of employee names with their rate of pay per hour and the number of hours they worked
in a week.

employee = ['Harry Potter', 12, 40, 'Wonder Woman', 15, 35, 'Hulk',
10, 38]

17

Accessing the elements of a list:

shop_list[0], shop_list[3] # 1st and 4th elements

student[1], student[n] # 2nd and (n+1)th elements

employee[22], employee[i] # 23rd and (i+1)th elements

The first element in a list is always at index 0, just as for strings.

The last element in a list with n items is always at list[n-1]

18

0 bread

1 milk

2 coffee

3 sugar

index shop_list

0 Harry Potter

1 12

2 40

3 Wonder Woman

4 15

5 35

6 Hulk

7 10

8 38

index employee

shop_list = ['bread', 'milk', 'coffee', 'sugar']

employee = ['Harry Potter', 12, 40, 'Wonder Woman', 15, 35, 'Hulk', 10, 38]

19

We can use a loop to process all of the items in a list as follows:

shop_list = ['bread', 'milk', 'coffee', 'sugar']

print (f'Weekly Shopping List')

i = 0
while i < 4:
 print(shop_list[i])
 i = i+ 1

Output

Weekly Shopping List
bread
milk
coffee
sugar

20

The following list stores the name of a student and their marks in Maths, Science and History.
We use it to display the student's grades on separate lines.:

grades = ['Joe Carthy', 'Maths', 60, 'Science', 70, 'History', 55]

print(f'Grades for: {grades[0]} are')
i = 1

while i < 6:
 print(f'{grades[i]} {grades[i+1]}')
 i = i+ 2

Output

Grades for: Joe Carthy are

Maths 60
Science 70
History 55

Why do we increment i by 2 in the above loop?

21

Empty List []
An empty list (list with no items in it) is denoted by [] e.g.

List = []

You can add an entry to any list by using the append method e.g.

List.append('hello')

adds the string 'hello' to List which now is ['hello']

shop_list = ['bread', 'milk', 'coffee', 'sugar']

shop_list.append('jam')

adds 'jam' to shop_list which now becomes:

['bread', 'milk', 'coffee', 'sugar', 'jam']
22

L6.7 grade2.py: Read names and marks from user
to compute the average class mark. The program then displays the list of students, their mark and
the deviation (difference)between their mark and the class average.

grades = [] # empty list to start
sum = 0.0
n = 0 # number of students

name = input('\nEnter name: [quit]: ')

while (name != 'quit'):
 grades.append(name) # Add name to list

 mark = float(input(f'Enter mark for {name}: '))
 grades.append(mark) # Add mark to list

 sum = sum + mark
 n = n + 1
 name = input('\nEnter name: [quit]: ')

average = sum / n # there are n marks in the list

print (f'\n\nClass average {average:.2f}\n')
print(f'Name Mark Deviation from Class average\n')

nm = len (grades) # number of elements in grades
j = 0

process list in pairs (0,1), (2,3), (4,5) and so on
while j < nm :
 diff = grades[j+1] - average
 print(f'{grades[j]} {grades[j+1]} {diff:.2f}')
 j = j + 2 # 2 elements per student

print(f'\nFinished \n')

23

Output

Enter name: [quit]: Joe
Enter mark for Joe: 55

Enter name: [quit]: Tom

Enter mark for Tom: 62

Enter name: [quit]: Jane

Enter mark for Jane: 75

Enter name: [quit]: quit

Class average 64.00

Name Mark Deviation from Class average

Joe 55.0 -9.00

Tom 62.0 -2.00

Jane 75.0 11.00

Finished

24

for Loop

The for loop is used when we know the number of times we wish to repeat the loop body. We frequently know how often
we wish to repeat a statement(s). For example, we often use the for loop to process a list of items.

 The for loop is often used in combination with the range() function.

There are 3 forms of range :

range (stop) generate list from 0 to stop, not including stop
range (5) gives 0, 1, 2, 3, 4

range(start, stop) generate list from start to stop, not including stop
range (4,8) gives 4, 5, 6, 7

range(start, stop, step) generate list from start to stop, not including stop,
 by increments of size step

range (0, 12, 2) gives 0, 2, 4, 6, 8, 10

25

for Loop

In a previous example we used a while loop to sum the integers 1 to 99. It can be written using a for loop as
follows:

sum3.py: Sum 1 + 2 + 3 + ... +99

sum = 0 # contains the sum we wish to compute
for i in range(1, 100): # 1, 2, 3, 4, …, 99
 sum = sum + i

print("\nSummation is:", sum, "\n")

The variable i takes on the next value in the sequence each time you go around the loop.
In this case, variable i starts with value 1 which is added to sum.
Then i becomes 2 which is added to sum and so on until i becomes 99.
Remember that range (1, 100) generates the list from 1 to 99 – the stop value of 100 is NOT
included in the list.

26

Write a program to read 5 integers, sum them and calculate the average. The program should display
the sum and the average.

sum3.py: Sum 5 numbers entered by user and display sum and average

sum = 0 # contains the sum we wish to compute

for i in range(1, 6): # read 5 numbers and sum them

 n = input(f'Enter number {i}: ')

 sum = sum + n

average = sum / 5

print(f'\n\nSum is: {sum} Average is: {average}')

Output:
Enter number 1: 1

Enter number 2: 2

Enter number 3: 3

Enter number 4: 4

Enter number 5: 5

Sum is: 15.0 Average is: 3.0

27

The for loop is usually used when we wish to process all the elements in a string or a a list.

Example L6.9
Write a program to output the characters in a string on separate lines.

str.py: Output each character on a newline

string = 'abc'
l = len (string) # 3 in this case

for i in range(l):
 print(string[i]) # displays elements 0, 1 and 2

Output
a

b
c

28

for Loop

We usually insert the len function into the range function when writing programs to process strings
or lists:

Example L6.9
Write a program to output the characters in a string on separate lines.

str.py: Output each character on a newline

string = 'abc'

for i in range(len(string)):
 print(string[i]) # displays elements 0, 1 and 2

Output
a
b

c

29

for Loop
We can also use the for loop to process strings or lists without using an index:

for x in string
 process element x of string

for x in list
 process element x of list

In these cases, the variable x takes on the value of each element of the string or list, starting with element
0, then element 1 and so on.

String example:

s = 'abc'
for x in s
 print(f'{x}')

Output:
a
b
c

30

for Loop
List example

shop_list = ['bread', 'milk', 'coffee', 'sugar']

print (f'Weekly Shopping List')

for j in shop_list:
 print(f'{j}')

Output:

Weekly Shopping List
bread
milk
coffee
sugar

31

Time to practice !

• Copy all the examples from the slides above and get them to run in
your Python environment.

• Then complete the exercises from the Handbook and get them to
run.

• Finally carry out the assignments from the Handbook and get them
to run.

32

