
 1

Python Programming Handbook

This is an informal introduction to Python programming. It introduces the beginner to some
fundamental programming concepts such as: input/output, variables and conditional
statements.

Overview
One point about programming must be clarified immediately: Anyone can learn to
program computers. However, you must be willing to spend some time studying and
practising.

There are two aspects to programming that must be mastered. One concerns problem
solving and the other concerns the programming language, in this case Python, that is
to be used.

You must learn how to solve problems. This is the core of programming. But you also must
learn how to express your problem solution in Python, so that it can be carried out on a
computer. These are two separate skills. You must try not to confuse them. It is difficult,
however, to explain one without reference to the other.

Problem Solving Skills
Computer programming is about problem solving. Every computer program solves some
particular problem, even programs to play games. It is impossible to write a computer
program unless you understand the problem you are being asked to solve. In programming,
you solve the problem, not the computer. A computer program describes to the computer
what it must do and how it is to be done. You give the computer instructions in the form of
a program, telling it what to do and how to do it. The set of instructions required to solve
a problem is a computer program

The term algorithm is used to describe the set of steps that solve a problem. An
algorithm may be expressed in English or in a programming language. A computer
program must be expressed in a programming language. In programming, we first
develop an algorithm for the problem at hand, and then we translate this algorithm to a
Python program, so that it can be executed (carried out, ran) on a computer.

Sometimes we make mistakes in telling the computer what to do. We overlook part of the
problem or do not understand what to do ourselves. In these cases, the computer program
will not produce the 'right answer'. It is, however, still solving a problem. It is simply not the
problem we wanted to solve. For this reason, it is important to thoroughly check that your
programs do indeed solve the problem you intended.

 2

Lesson 1: Output

In this lesson we learn how to perform output – to display messages on your screen.

All program code will be displayed using the Courier font in this text.

Output is the term used to describe information that the computer displays (writes) on your
screen or stores (writes) on a disk drive.

The commonest form of output is that of displaying a message on your screen. In Python,
we use the print statement to display output on the screen.

The following print statement will display the message:

 My name is Beth. This is my first program

on the screen.

 print('My name is Beth. This is my first program')

This is a single Python program statement. A statement is a command to the computer
to carry out an action. So our first Python program is composed of this single statement.
To execute this program, it is stored in a file which we call print1.py. which contains
one line:

 print('My name is Beth. This is my first program')

To execute the program we use the command python3 which runs the program:

% python3 print1.py
My name is Beth. This is my first program

You may also run Python programs using an IDE which will be discussed later.

We call the message that print displayed a string.

A string is a list of characters in quotes. You may put any characters that you wish in
a string. Strings can be represented by characters inside either single or double quotes:

'My name is Beth.'
"My name is Beth."

You can display strings using a print:

 print('Hello ! Goodbye!')
 print('rubbish 123 rubbish xyz @£$%^&*')

 3

Statements

When people communicate in any language, they use sentences. When you write down a
sentence in English, you have a full stop at the end. This tells us where the sentence ends.
You call the full stop a sentence terminator i.e. it indicates the end of a sentence.

Similarly, when you write programs you also use sentences to communicate with the
computer. In programs, sentences are called statements. They also have a terminator.
Python statements use the end of line to terminate a statement. The 2 statements below
are terminated by the newline character.

 print('Hello ! Goodbye!')
 print('rubbish 123 rubbish xyz @£$%^&*')

After you entered) on the first line, you pressed the Return key on the keyboard to start a
new line – we call this the newline character. Similarly after you entered) on the second
line, you also pressed Return thus starting a new line.

If you make a mistake entering a statement, a computer will not understand the statement
and it will display an error message. This often caused by a spelling error or a missing
bracket or quotation mark. For example, in a programming, just as in English, you must
always have the correct number of quotation marks and brackets.

Left brackets such as (, { and [are called opening brackets.

The quotation marks at the start of a phrase: " (double) and ' (single) are called opening
quotes.

Right brackets such as) , } and] are called closing brackets and quotation marks at the
end of a phrase are called closing quotes.

A simple rule is that for every opening bracket or quotation mark you must have a
corresponding closing bracket or quotation mark.

Example 1.1: Matching brackets and quotes:

'Hello'
(age > 10)
'x'
list[10]

Breaking this rule causes a syntax error. The following are examples of syntax errors:

age > 10)
'x
list[10
prin('Hello ! Goodbye!')

The last error is due to misspelling print

 4

What to do when an error occurs
When a syntax error occurs, you must work out what mistake(s) you have made. This
means checking the statements of your program and seeing where the syntax is incorrect.

You then edit your program to correct the mistake. When you have corrected your program,
it can be executed.

To execute a program or to run a program means that the computer carries out the
statements making up the program.

A Python program is made up of a group of one or more statements. These statements
allow us to control the computer.

Using them, we can display information on the screen, read information from the
keyboard and process information in a variety of ways.

As we proceed we will describe the different kinds of statements which are:

Input/Output (I/O) statements (e.g. display information on screen) Lessons 1 and 2

Variable manipulation statements (e.g. to do arithmetic) Lesson 3

Conditional statements (e.g. to make decisions) Lessons 4 and 5

We will also look at more complex variables called arrays and lists in Lesson 6

 5

Lesson 1 Exercises – try these in your own time

1. What	is	the	output	of	the	following	print	statement?		

print('Have a great day!')

a.	'Have	a	great	day!'		

b.	'Have	a	great	day'		

c.	Have	a	great	day!		

d.	'Have	a	great	day!'	

2. What	is	the	output	of	the	following	statements?	
print('Hi there!')
print('How are you doing?')
a. Hi	there!	How	are	you	doing?		
b. How	are	you	doing?	Hi	there!		
c. 'Hi	there!'		

	 								How	are	you	doing?'		
d. Hi	there!		
							How	are	you	doing?		

3. Write	a	program	that	prints	a	message	saying		

I	love	Python!		

4. Write	a	program	that	prints	a	message	saying	your	name	and	your	age,	e.g.		

My	name	is	Colin.	I	am	20	years	old!		

5. Write	a	program	to	display	the	message	'Welcome	to	Python'	three	times,	on	separate	
lines	using	three print	statements.		

6. 	
7. Write	a	program	to	display	the	message	'Python	is	awesome!'	two	times,	on	separate	

lines,	using	only	one	print	statement	and	\n		
	

8. What	are	the	syntax	errors	in	the	following	statements:	
	
print('Hello ! Goodbye!)
print(Hello ! Goodbye!')
print('Hello ! Goodbye!'
print 'Hello ! Goodbye!')
prlnt('Hello ! Goodbye!')

 6

Lesson 1 Assignments – you email these to UCD

1. Write	a	program	that	prints	out	your	favourite	food,	followed	by	a	blank	line,	followed	
by	your	favourite	colour,	followed	by	a	blank	line,	followed	by	your	favourite	animal.	
Use	either	the		\n		character	in	one	print statement	or	use		separate	print	
statements.		
	

2. Print	a	square	made	up	of	4	@	characters	per	line	using	a	single	print	statement.	
	
@@@@	
@@@@	
@@@@	
@@@@	

 7

Lesson 2: Input and Variables

Input is the term used to describe the transfer of information from the keyboard (or a disk
) to the computer. We can use the word read for input e.g read information from the
keyboard. The question arises – where do we store the information we read in. This
introduces the concept of variables.

A variable is a container for information.

This means that we can store information in a variable. It is called a variable because at
any time we can change (vary) the information it stores.

So when we input information, we store it in a one or more variables. We give each
variable a unique name, which we use to identify it. The following are examples of
variable names we could use in a Python program:

 colour
 my_age
 pension_age

name
taxcode
tax_rate
temperature
name
hourly_pay

Fundamental principle of writing clear programs

Choose meaningful names for variables

Using meaningful variable names it makes your programs easier to understand. For
example, if you are writing a program which deals with pension ages then you could use
any of the following variable names to store the pension age but which one makes is
easiest to understand:
 pension_age

pa
p
x
pna

The variable name pension_age is the obvious choice. When you see this name you
automatically know what it the variable is being used for. If you use a name like p or x
then the name gives you no idea about what the variable is being used for.

 8

We use the Python input statement to read information from the keyboard, into a
variable.

Example 1: Write a program to ask the user to enter their favourite colour. The program
reads this colour that the user types on the keyboard and displays a message followed by
the colour entered by the user.

favourite_colour = input('Enter your favourite colour: ')

 print(favourite_colour)

If we execute the program the following appears on the screen (the bolded text is that
entered by the user on the keyboard. We will use this convention throughout the text).

Enter your favourite colour: blue
blue

The variable favourite_colour is used to store the characters that the user types on
the keyboard that is, it will store a list of characters.

When you use a variable name with print it will display the value of the variable i.e.
the string blue in the example above.

The input() statement does two tasks: it displays the string in quotes and then reads
text from the keyboard, (for example the word blue may be entered), and it places this
text in the variable favourite_colour.

We have seen that the print statement is used to display output on the screen. It can
be used to display strings and numbers in the same print statement.

Example 2: Write a program to ask the user to enter their favourite colour. The program
reads this colour that the user types on the keyboard and displays a message followed by
the colour entered by the user.

favourite_colour = input('Enter your favourite colour: ')

 print('Yuk ! I hate ', favourite_colour)

If we execute the program the following appears on the screen:

Enter your favourite colour: blue
Yuk ! I hate blue

 9

The statement
print('Yuk ! I hate ', favourite_colour)

instructs the computer to display the message Yuk ! I hate followed by the value of the
variable favourite_colour i.e. blue in this example.

We use the expression 'the value of a variable' to mean 'the value contained in a
variable'.

We take the phrase 'the value of favourite_colour is blue' to mean 'the value
contained in the variable favourite_colour is blue'. We will use the shorter form
from now on.

Make sure you understand the difference between:

 print('favourite_colour')
and
 print(favourite_colour)

In the first case, the word (string) favourite_colour appears on the screen.

In the second case, the value of a variable called favourite_colour is displayed
which could be anything, for example the word blue or whatever value the user has given
the variable like red, pink and orange. You can store many words in a string variable.

Rules for Variable Names

Python and every programming language, has rules on how you name variables:

• A variable name can only contain the following:
• letters (lowercase and uppercase, ie a–z and A–Z)
• digits (0–9)
• the underscore character '_'

• A variable name cannot start with a digit

• Variable names in Python are case-sensitive – it distinguishes between

uppercase and lower case letters so that colour and Colour are different
variables

• There are a number of reserved words or keywords that have built-in meanings

in Python and cannot be used as variable names (e.g. if, return, def, del,
break, for, in, else, while, import)

The following are legal or valid variable names in Python:

Colour, name, firstname, surname, class1, class 602,
first_name, second_name, address_line1.

 10

The use of the underscore '_' character is very useful in creating meaningful names made
up of 2 or more words.

Do not confuse the underscore character with the minus sign '-'. The minus sign (or any
other symbol) cannot be used in a variable name. thus first-name is not a valid
variable name.

Comments

In a Python program, any text after # is called a comment and is ignored by Python.
This text is there to help explain to someone reading the program, what the program does
and how the program works. Comments are an important component of programs.
This is because when you read your programs some time after writing them, you may find
them difficult to understand, if you have not included comments to explain what you were
doing. They are even more important if someone else will have to read your programs
e.g. your tutor who is going to grade them!

It is a useful idea to start all programs with comments which give the name of the file
containing the program, the purpose of the program, the authors name and the date on
which the program was written, as the first comments in any program. Example 2 could
be written as:

 # colour.py: Prompt user to enter colour and display a message
 # Author: Joe Carthy
 # Date: Oct 20 2022

favourite_colour = input('Enter your favourite colour: ')

 print('Yuk ! I hate ', favourite_colour)

 11

Lesson 2 Exercises

1. Valid or invalid variable names

a. Is the variable name TotalMarks correct?
b. Is the variable name number-of-students correct?
c. Is the variable name firstName correct?
d. Is the variable name myVar1 correct?
e. Is the variable name customerName correct?
f. Is the variable name productPrice correct?
g. Is the variable name 3rdStudent correct?
h. Is the variable name isAvailable? correct?
i. Is the variable name total-sales correct?
j. Is the variable name customer_email correct?

3. Write	a	program	that	asks	the	user	for	their	name	using	input.	Store	the	name	in	a	

variable	and	display	a	personalized	greeting	using	the	variable.		
	

4. What	is	the	output,	if	any,	of	the	following	program:	
	

print('hello\n')
print('bye bye\n')

5. Write	a	program	that	prompts	the	user	to	enter	their	favourite	colour	and	favourite	

animal	using	the	input.	Store	these	values	in	separate	variables	and	display	them	in	a	
sentence	:

My favourite colour is … and my favourite animal is ..

Lesson 2 Assignments

i. Write	a	program	that	prompts	the	user	to	enter	their	favourite	number	using	input.	
Store	the	number	in	a	variable	and	print	a	message	that	includes	the	user's	favourite	
number.	

ii. Create	a	program	that	simulates	a	hospital	registration	system.	Prompt	the	user	to	

enter	the	following	information:	

Name	
Surname	
Age	
Height	(in	cm)		

Store	each	piece	of	information	in	a	separate	variable	with	an	appropriate	name.	
Finally,	print	the	information	in	the	following	format:		

Name:	Joe		
Surname:	Carthy	
Age:	100	
Height:	180	

 12

Lesson 3: Variables and Assignment

In Lesson 2 we used input to give a variable its value.. Giving a variable a value is
called assignment. We can use assignment to give a value to a variable directly in a
program without input. We may give the variable a value or compute a value based on
the values of other variables. For example, suppose we have a variable called metres,
to which we wish to give the value 12. In Python we write:

 metres = 12

This is usually read as 'metres is assigned the value 12'. Of course, we could use any
value instead of 12. Other examples of assigning values to variables are:

 centimetres = 50
 litres = 10
 metres = 4

colour = 'red'
name = 'Joe Carthy'
pay_per_hour = 10.5

Example L3.1: Write a program to convert 5 metres to centimetres. A simple
Python program to do this is given below.

#convert1.py: converts metres to centimetres
#Author: Joe Carthy
#Date: 21/10/2023

metres = 5
centimetres = metres * 100
print('5 m is ', centimetres, 'cms',)

Executing this program produces as output:

5 m is 500 cms

Here we use the value of the variable metres to compute the value of the variable
centimetres.

Other examples of such an assignment are:

 gallons = 4

pints = gallons * 8
 kilometres = 4
 metres = 18
 cms = (kilometres * 100000) + (metres * 100)

The program to convert metres to centimetres as presented in Example L3.1 is very
limited in that it always produces the same answer. It always converts 5 metres to
centimetres. A more useful version would prompt the user to enter the number of metres
to be converted and display the result:

 13

Example L3.2: Converting metres to centimetres, version 2.

#convert2.py: converts metres to centimetres version 2
#Author: Joe Carthy
#Date: 21/10/2023

m = input('Enter number of metres: ')

metres = float (m)

centimetres = metres * 100
print(metres, 'metres is ', centimetres, 'cms',)

Executing this program produces as output:

Enter number of metres: 4
4.0 metres is 400.0 cms

Variable Types
Important note: The input function reads from the keyboard and returns a list of
characters i.e. a string. Thus the variable m in the example above contains the string '4'
and not the number 4.

This is very confusing for beginners to programming. A fundamental aspect of variables is
that they have a type. The type of a variable tells you what kind of data it stores.

In our programs we will use three types: int (whole numbers), float (numbers with
decimal point) and string (list of characters).

When you are working with numbers and wish to do arithmetic with them (add, subtract,
multiply and divide) then you must use either the type int or float.

So it is crucial to understand the difference between the number 42 and the string '42' as
used in the following:

a = 42
b = a * 2

This results in b having the value 84. A and b are of type int in this case.

x = '42' # x is type string
y = x * 2 # y is type string

This results in y having the value 4242 – string of characters.

When you 'multiply' a string variable by n you get n copies of the string e.g.

The code:

x = 'bye'
y = x * 3
gives y the string value 'byebyebye'

 14

This brings us back to Example L3.2 and the statements

m = input('Enter number of metres: ')

metres = float (m)

The variable m is of type string.

The float function converts the string m to a number with a decimal point (real number).

This means that metres now contains a number which we can do arithmetic with.

The output of L3.2 is 'crowded' in that there is no blank line before or after the output or
between the two lines of output. This makes it hard to read the output. You can use the
'\n' character in strings to start new lines.

The version below fixes this issue by putting one '\n' in the input() function and 3 in the
print() function.

It also uses a shortcut to avoid using a string variable, m, in the previous examples. It
does this by converting the string from input to a float in one statement:

 metres = float (input('\nEnter number of metres: '))

Example L3.3: Converting metres to centimetres, version 4

convert4.py: converts metres to centimetres version 3
Outputs extra blank lines to make it easier to read the output

#Author: Joe Carthy
#Date: 21/10/2022

metres = float (input('\nEnter number of metres: '))

centimetres = metres * 100

print('\n', metres, 'metres is ', centimetres, ' centimetres\n\n')

When you run it, notice the extra blank lines

Enter number of metres: 3.5

3.5 metres is 350.0 centimetres

 15

Some Fun making the computer beep!

When you use '\a' (called the BEL character) in print, the computer makes a beep
sound – it does not display anything. So the program below simply plays 3 beeps.

beep.py: Just for fun - beep 3 times !!

print('\a \a \a')

Example L3.4: As another example of the use of I/O and variables consider a simple
calculator program. This program prompts for two numbers, adds them and displays
the sum.

calc.py: Calculator program to add 2 numbers
Author: Joe Carthy
Date: 01/10/2023

number1 = float(input('\nEnter first number: '))

number2 = float(input('\nEnter second number: '))

sum = number1 + number2

print('\n\nThe sum of', number1, 'and', number2, 'is', sum, '\n\n')

 16

calc.py outputs:

Enter first number: 2.4

Enter second number: 5.76

The sum of 2.4 and 5.76 is 8.16

Variables must be defined before you use them other
statements

Variables must be defined before you use them – you must give them a value.

If a variable is 'not defined' (not assigned a value), trying to use it will generate an error.

So if you run the 1 line program:

 print ('x = ', x)

An error is displayed because the variable x has not been defined. The error
message may not be very user friendly such as: that below – the last line is the helpful
one:

 Traceback (most recent call last):
 File "<string>", line 1, in <module>
 NameError: name 'x' is not defined

The most common reason for this error is mis-spelling the name of.variable as in the
code below

 metres = 5
 cms = metres / 100
 print (f'{metrs} = {cms} centimetres')

Here we have misspelled metres in the print statement and an error is displayed:

 Traceback (most recent call last):
 File "<string>", line 3, in <module>
 NameError: name 'metrs' is not defined

 17

More on print() function and displaying variables

It can get quite complicated when we output strings and variables using print as in the
statement

print('\n\nThe sum of', number1, 'and', number2, 'is', sum, '\n\n')

There is a simpler way to display this message with print using f-strings. We put the
character f as the first item in print:

print(f'\n\nThe sum of {number1} and {number2} is {sum} \n\n')

which produces identical output to the earlier print

The sum of 2.4 and 5.76 is 8.16

When using an f-string, we enclose any variable we wish to display in {} brackets.

print will display the value of each variable in {}.

This avoids having to have separate strings in quotes, separated by commas, as in the
earlier version of print.

As another example consider the following variables and how we want to display them:

Name = ‘Joe Bloggs’
rate = 10.00
num_hours = 40
pay = rate * num_hours

Without using an f-string we display using:

print('Pay for ', name, 'at ', rate, 'per hour is', pay)

which outputs

Pay for Joe Bloggs at 10.0 per hour is 400.0

We can display the same output with a simpler print using f-strings:

print(f'Pay for {name} at {rate} per hour is {pay}')

displays the same output as the first print() above.

Pay for Joe Bloggs at 10.00 per hour is 400.00

 18

Displaying a fixed number of decimal places

Python will display the result of numeric calculation to many decimal places.

For example,

x = 19/3.768

print(f'x = {x}')

will output on my Mac computer:

x = 5.042462845010616

In most of our calculations it is enough to display result with 2 decimal
places.

We use an f-string to do this by following the variable in {} with
 :.number of decimal pointsf you wish to output e.g. {x:.2f} specifies to
display x to 2 decimal places.

You can change the number from 2 to whatever you wish, to have that
number of places displayed after the decimal point.

To print x to 2 decimal points

x = 19/3.768

print(f'x = {x:.2f}')

outputs

x = 5.04

 19

Lesson 3 Exercises
1. What is the data type of each variable?

a. What is the data type of the variable 'age'? age = 25
b. What is the data type of the variable 'name'? name = 'John Doe'
c. What is the data type of the variable 'price'? price = 9.99
d. What is the data type of the variable 'quantity'? quantity = 10
e. What is the data type of the variable 'message'? message = 'Hello'
f. What is the data type of the variable 'discount'? discount = 0.2

2. Write a program to convert 10 dollars to kyats using an exchange rate of 1 dollar =
2100 kyats.

10 dollars = 21000 kyats

Use print with f-strings in all of the following programs

3. Write a program that takes a single length (a float) and calculates the following:
• The area of a square with side of that length. (length * length)
• The volume of a cube with side of that length. (length ** 3)
• The area of a circle with diameter of that length (3.14 * (length/2)**2))

Enter length: 4

Area of square: 16.0
Volume of cube: 64.0
Area of circle: 12.56

4. Write a program that takes an amount (a float), and calculates the tax due
according to a tax rate of 20%

Enter amount for tax at 20%: 200.0

Tax: 40.00

5. Write a program to simulate a cash register for a single purchase. The program
reads the unit cost of an item and the numbers of items purchased. The program
displays the total cost for that number of units:

Enter unit cost: 5
Enter number of units: 6

Total cost of 6 units: 30.00

6. Modify the programs 3, 4 and 5 above to display the output to one

decimal point e.g.

Area of circle: 12.5

 20

Lesson 3 Assignments
Use print with f-strings in all of the following programs

1. Ask	the	user	to	enter	a	temperature	in	Celsius	and	convert	it	to	Fahrenheit	using	the	
formula:		

Fahrenheit	=	(Celsius	*	1.8)	+	32.	

Print	the	converted	temperature	in	Fahrenheit.		

Enter temperature in Celsius: 100

100 degrees Celsius = 212.0 degrees Fahrenheit

	

2. Convert	dollars	to	kyat		as	follows:	
a. Display		'Dollar	to	Kyat	conversion	program'	
b. Ask	the	user	to	enter	an	amount	in	dollars.		
c. Ask	the	user	to	enter	the	kyat	exchange	rate	for	dollars.		
d. Calculate	kyat	amount	by	multiplying	the	dollar	amount	by	the	exchange	rate.		
e. Print	out	the	dollar	and	kyat	amounts		

Dollar to Kyat conversion program
Enter amount in dollars: 10
Enter dollar to kyat exchange rate: 2100
10 dollars = 21000 kyats

	

3. Write	a	program	to	calculate	how	much	someone	gets	paid	per	week	based	on	the	
number	of	hours	they	work	per	week.	The	program	asks	the	user	to	enter	the	number	
of	hours	worked	and	the	rate	per	hour	and	then	displays	the	total	pay,	with	a	blank	
line	between	each	line	of	output:	

	

Enter number of hours worked: 20.5

Enter rate per hour: 10

Total pay = 205.0

	 	

 21

4. Write	a	program	to	display	your	total	savings	for	3	weeks	based	on	saving	$10	in	
Week	1,	$15	in	Week	2,	and	$20	in	Week	3.	Use	3	variables,	one	for	each	week's	
savings	and	one	the	total	amount	saved.	Then	calculate	the	total	amount	of	money	
saved	over	the	three	weeks	by	adding	the	3	variables.	Print	the	result	as	follows:

You saved a total of 45 dollars
Week 1 you saved 10 dollars
Week 2 you saved 10 dollars
Week 3 you saved 10 dollars

5. You	sell	10	cups	of	lemonade	at	$2.50	each.	Calculate	the	total	amount	of	money	you	
earned	by	multiplying	the	number	of	cups	sold	by	the	price	per	cup	using	3	variables,	
one	for	the	number	of	cups,	one	for	the	cost	per	cup	and	one	for	the	total	amount	sold.	
Print	the	result	as	follows,	with	a	blank	line	between	each	line	of	output:	
	

Number of cups sold: 10

Price per cup: 2.50

Total sold: 25.00

	

 22

Lesson 4: Conditional Statements – if statement

All of our programs to date have been made up of one or more statements. The statements
have been executed one after the other in our programs, that is sequentially. However
there are many times in programming where we do not wish to execute statements in this
way. Sometimes we wish to skip over some statements and sometimes we wish to repeat
some statements. This is the purpose of conditional statements.

People are familiar with making decisions. For example, consider the following sentences:

 If I get hungry, I will eat my lunch.
 If the weather is cold, I will wear my coat.

These two sentences are called conditional sentences. Such sentences have two parts:
a condition part ('If I get hungry', 'If the weather is cold') and an action part ('I will eat my
lunch', 'I will wear my coat').

The action will be only be carried out if the condition is satisfied. To test if the condition is
satisfied we can rephrase the condition as a question with a yes or no answer. In the case
of the first sentence, the condition may be rephrased as 'Am I hungry ?' If the answer to
the question is yes, then the action will be carried out (i.e. the lunch gets eaten), otherwise
the action is not carried out.

We say the condition is true (evaluates to true) in the case of a yes answer. We say the
condition is false (evaluates to false) in the case of a no answer. Only when the condition
is true will we carry out the action. This is how we handle decisions daily.

In programming, we have the same concept. We have conditional statements. They
operate exactly as described above. One of these is known as the if statement. This
statement allows us evaluate (test) a condition and carry out an action if the condition is
true.

In Python, the keyword if is used for such a statement. As an example, we modify the
program to convert metres to centimetres to test if the value of metres is positive (greater
than 0) before converting it to centimetres.

Note you put a ':' after the condition in an if statement

The action statement(s) are indented in Python. This allows Python to identify the statements
making up the actions to be carried out, when the condition is true.

The action statements end with the first non-indented statement follow the if.

 23

Example L4.1

convert5.py: converts metres to centimetres
check quantity of metres is positive
Author: Joe Carthy
Date: 21/10/2023

metres = float (input('\nEnter number of metres: '))

Check if metres is positive

if metres > 0:
 centimetres = metres * 100
 print(f'\n {metres} metres is {centimetres} centimetres\n\n')

if metres <= 0:
 print(f'\nEnter a positive number for metres\n')
 print(f'\nYou entered: {metres} \n\n')

Executing this program with -42 as input produces as output:

Enter number of metres: -42

Enter a number for metres

You entered -42

The first if statement tests if the value of metres is greater than 0 (metres > 0). If this is
the case, then the conversion is carried out and the result displayed.

Otherwise, if the value of metres is not greater than 0, this does not happen i.e. the two action
statements are skipped.

The second if statement tests if metres is less than or equal to 0. If this is the case, then the
message to enter a positive value is displayed and the value entered is displayed. If this is not the
case the two print statements are skipped and the program terminates.

In this particular example, only one of the conditions can evaluate to true, since they are mutually
exclusive i.e. metres cannot be greater than 0 and at the same time be less than or equal to 0.

Because this type of situation arises very frequently in programming i.e. we wish to carry out some
statements when a condition is true and other statements when the same condition is false, a
special form of the if statement is provided called the if-else statement. The general format
may be written as

if (condition):
 action statements1 #carried out if condition is true
else:
 action statements2 #carried out if condition is false

 24

Example L4.2

We rewrite the program L4.1 using if-else:

convert6.py: converts metres to centimetres
check quantity of metres is positive
Author: Joe Carthy
Date: 21/10/2023

metres = float (input('\nEnter number of metres: '))

if metres > 0:
 centimetres = metres * 100
 print(f'\n {metres} metres is {centimetres} centimetres\n\n')
else:
 print(f'\nPlease enter a positive number for metres\n')
 print(f'\nYou entered: {metres} \n\n')

This program operates in the same way as the previous example. However, it is more
efficient, in that the condition has only to be evaluated once, whereas in first example, the
condition is evaluated twice. Note the action statements for else must be indented just as
for if.

Example L4.3

This program prompts the user to enter the number of hours worked in a week and the rate
of pay per hour. It displays the weekly pay calculated as (hours worked) * (rate [per hour).

There are two conditions. Workers can work a maximum of 100 hours per week and the
maximum hourly pay rate is 50. The program checks these two conditions

pay.py: Calculate and display hourly pay

hours_worked = float(input('\nEnter hours worked: '))

if hours_worked > 100:
 print(f'\nHours worked cannot exceed 100: {hours_worked}')
else:
 rate_per_hour = float(input('\nEnter rate per hour: '))
 if rate_per_hour > 50:
 print(f'\nRate too large: {rate_per_hour}')
 else:
 pay = rate_per_hour * hours_worked
 print(f'\nPay = {pay} for {hours_worked} hours worked at
{rate_per_hour} per hour')

Enter number of hours worked: 20

Enter rate per hour: 20

Pay = 400.0 for 20.0 hours worked at 10 per hour

 25

In L4.2, if a user enters a value greater than 100 for hours worked, the condition in the first
if is true so the action is carried out (display that this number is too large) and all of the
statements following else are skipped.

If a valid number of hours is entered, then we carry out the statements for the first else.
Here we read the hourly rate.

If this. number is too large we display an error and skip the statements in the second else,
otherwise we carry out these statements i.e. calculate the pay and display it.

This programs shows that we can have if and if-else statements as part of the actions
for any if statement.

We call a condition (e.g. metres > 0) a Boolean expression or a conditional
expression.

This simply means that there are only two possible values (true or false) which the
condition can yield.

A Boolean expression evaluates to either true or false.

More on Conditions

There are only six types of condition that can arise when comparing two numbers.

We can compare for:

1. equality - are they the same ?

2. inequality – are they different ?

3. is one greater than the other ?

4. is one less than the other ?

5. is one greater than or equal to the other ?

6. is one less than or equal to the other ?

The following illustrates how to write the various conditions to compare the variable feet to
the number 0 in Python:

(feet == 0) is feet equal to 0?

(feet != 0) is feet not equal to 0?

(feet > 0) is feet greater than 0?

(feet < 0) is feet less than 0?

(feet >= 0) is feet greater than or equal to 0?

(feet <= 0) is feet less than or equal to 0?

 26

Technically, the symbols ==, <>, <, >, <=, and >=, are called relational operators, since
they are concerned with the relationship between numbers.
We can also compare two strings using the same operators. We often want to test if
one string is the same as (equal to) another string as we shall in the next example.

Example L4.4

A calculator program to handle both subtraction and addition. The user is prompted for the
first number, then for a '+' or '-' character to indicate the operation to be carried out, and
finally for the second number. The program calculates and displays the appropriate result:

calc2.py: Calculator program to add or subtract numbers
Author: Joe Carthy
Date: 01/10/2023

number1 = float(input('\nEnter first number: '))

operation = input('\nEnter operation [+ or –] ')

number2 = float(input('\nEnter second number: '))

if operation == '+':
 sum = number1 + number2
 print(f'\n\nThe sum of {number1} and {number2} is {sum} \n\n')
else:
 diff = number1 - number2
 print(f'\n\nTaking {number2} from {number1} is {diff} \n\n')

Executing this program produces as output:

Enter first number: 9

Enter operation [+ or -]: -

Enter second number: 4

Taking 4.0 from 9.0 is 5.0

We compared the string operation with the string '+' in the above code.

The code in L4.4 'assumes' that if the operation is not '+' then it must be '-' but the user
could have hit the wrong key. Example L4.5 below, checks that the actual characters '+',
or '-' were entered. It deals with the possibility that it was neither '+', or '-' that is the user
made a mistake.

User data entry mistakes are very common and professional programmers always
check that the user input is as was expected.

 27

Example L4.5

calc3.py: Calculator program to add or subtract 2 numbers
Author: Joe Carthy
Date: 01/10/2023

number1 = float(input('\nEnter first number: '))

operation = input('\nEnter operation [+ or –] ')

number2 = float(input('\nEnter second number: '))

if operation == '+':
 sum = number1 + number2
 print(f'\n\nThe sum of {number1} and {number2} is {sum} \n\n')

else:
 if operation == '-':
 diff = number1 - number2
 print(f'\n\nTaking {number2} from {number1} is {diff} \n\n')

 else:
 print(f'\nInvalid operation only + and – allowed\n')
 print(f'You entered: {operation} \n')

Executing this program produces as output:

Enter first number: 9

Enter operation [+ or -]: *

Enter second number: 4

Invalid operation – only + and – allowed
You entered: *

The code in L4.5 checks that a valid operation is entered (= or -). However, if the user
enters an invalid operation, then there is no need to ask for the second number, as we did
in L4.5. L4.6 below, addresses this issue but we have to understand combining conditions
first.

 28

Combining conditions: and/or

We often need to combine two or more conditions in a statement. For example when we
make a decision on wearing a coat we might decide based on:

If it is raining and it is cold then I will wear a warm raincoat

Here we test two conditions: is it raining and is it cold. We only carry out the action (wear
a warm raincoat) if both conditions are true.

When we use and to combine conditions, we only carry out the action if both (all) the
conditions are true.

Sometimes we wish to test if either one of two conditions is true as in

If it is raining or it is cold then I will wear a coat

In this case, if any one of the conditions (is it raining /is it cold) is true, then we carry out
the action (wear a coat).

In our calculator program, we only need to ask the user to enter a second number if the
operation is either '+' or '-'. We can use the statement

if (operation == '+') or (operation == '-'):

to test if either '+' or '-' has been entered. If the user has entered one of these operations
then the actions for the if are carried out.

If an invalid operation has been entered, then the actions of the last else are carried out.

 29

Example L4.6

calc4.py: Calculator program to add or subtract 2 numbers
ask for second number if a valid operation has been entered
Author: Joe Carthy
Date: 01/10/2023

num1 = float(input('\nEnter first number: '))

operation = input('\nEnter operation [+ or –] ')

if (operation == '+') or (operation == '-'):
user must have entered + or -
 num2 = float(input('\nEnter second number: '))

 if operation == '+':
 sum = num1 + num2
 print(f'\n\nThe sum of {num1} and {num2} is {sum} \n\n')
 else: # must be a -
 diff = num1 - num2
 print(f'\n\nTaking {num2} from {num1} is {diff} \n\n')

else:
 print(f'\nInvalid operation only + and – allowed\n')
 print(f'You entered: {operation} \n')

 30

In L4.7 we rewrite L4.6 using and to test if a valid operation was entered. In this case we
test if the operation was not '+' and was not '-'. If both conditions are true, then the operation
is not a '+ and it's not a '-', so it is invalid.

if (operation != '+') and (operation != '-'):
 # then it must be an invalid operation

Example L4.7

calc5.py: Calculator program to add or subtract 2 numbers
ask for second number if a valid operation + or - has been entered
Author: Joe Carthy
Date: 01/10/2023

num1 = float(input('\nEnter first number: '))

operation = input('\nEnter operation [+ or –] ')

if (operation != '+') and (operation != '-'):
 print(f'\nInvalid operation only + and – allowed\n')
 print(f'You entered: {operation} \n')

else:
 num2 = float(input('\nEnter second number: '))

 if operation == '+':
 sum = num1 + num2
 print(f'\n\nThe sum of {num1} and {num2} is {sum} \n\n')

 else:
 diff = number1 - number2
 print(f'\n\nTaking {num2} from {num1} is {diff} \n\n')

 31

Example L4.8: Range checking

We often need to check if the input to a program lies in a range. For example, the age of
a child in Ireland lies between 1 and 18 years which can be expressed as great than 0 and
less than 18 years (age > 0 and age <18). The age of an adult is from 18 upwards, but we
need an upper limit such as 122, so we test if age lies between 18 and 122: (age >18 and
age <= 122). Note that 122 years is the age of oldest person to have lived so far.

Example L4.8 is a program to read a person’s age and output whether they are a child or
an adult using range checking.

age.py: Check if age is for a child or an adult
Author: Joe Carthy
Date: 01/10/2023

age = float(input('\n Enter age: '))

if (age > 0) and (age < 18):
 print(f'\n Child age: {age}')

if (age >= 18) and (age <= 122):
 print(f'\n Adult age: {age}')

if (age <= 0) or (age > 122):
 print(f'\n {age} not in age range for a person \n')

L4.8 outputs

 Enter age: 34

 Adult age: 34.0

and

 Enter age: 12

 Child age: 12.0

and

 Enter age: 150

 150.0 not in age range for a person

 32

General format of if, if-else

 if condition:
 action1A
 action1B

The statements action1A and action1B will only be executed if the
condition is true

 if condition:
 action1A
 action1B
 else:
 action2A
 action2B

The statements action2A and action2B will only be executed if the
condition is false

Note that the action statements can be any Python statement, including another if
statement.

 if condition1 and condition2:
 action1A
 action1B

The statements action1A and action1B will be executed if both
condition1 and condition2 are true

 if condition1 or condition2:
 action1A
 action1B

The statements action1A and action1B will be executed if any one (or
both) of condition1 or condition2 is true

 33

Lesson 4 Exercises

1. What are the 6 conditions that we can use to compare two numbers?

2. Write a program that asks the user to enter their exam score. If the score is greater
than or equal to 60, display 'Congratulations! You passed the exam'. Otherwise,
display 'Sorry, you did not pass the exam'.

score = int(input('Enter your exam score: '))
if score >= 60:

print('Congratulations! You passed the exam.')
else:

print('Sorry, you did not pass the exam.')	
	

3. Write	a	program	that	asks	the	user	to	enter	a	password.	If	the	password	is	
'password123',	display	'Access	granted'	Otherwise,	display	'Access	denied'		

	

4. Write a program that prompts the user to enter their age and whether they have a
driver's license ('yes' or 'no). If the person is 18 or older and has a driver's license,
display 'You can legally drive'.
If the person is 18 or older but does not have a driver's license, display 'You can
apply for a driver's license'.
If the person is under 18, display 'You are not old enough to drive'.	

	
Prompt the user to enter their age

age = int (input('Enter your age: '))

Prompt whether they have a driver's license

has_license = input('Do you have a drivers license? [yes/no]:
')

Check the driving eligibility

if (age >= 18) and (has_license == 'yes'):
 print('You can legally drive.')

if (age >= 18) and (has_license == 'no'):
 print('You can apply for a drivers licence')

if (age < 18):
 print ('You are not old enough to drive.')

	

5. Write a program to simulate a cash register for a single purchase. The program
should read the unit cost (real number) of an item and the numbers of items

 34

purchased. The program should display the total cost for the items. If the unit cost
is greater than 10000, the program should display an error message, 'Invalid
unit cost – too large.'

If the unit cost is 0 or a negative number it should display an error message, 'Unit
cost must be greater than zero'.

Enter unit cost: 5.5
Enter number of units: 10
Total cost: 55.0

Enter unit cost: 0
Unit cost must be greater than 0

6. Write a program to show a menu of areas to be calculated and to calculate the area

chosen by the user. The output you are to display, is shown in italics below

Choose the area you wish to calculate from the menu below

Compute Area of one of the following:

 s for the area of a square
 c for the area of a circle

r for the area of a rectangle

Enter your choice: r

Enter length: 4
Enter breadth: 5

Area of rectangle is: 20.0

The program should then prompt for the dimensions of the area:

length of a side in the case of a. square (area = length **2)

radius in the case of a circle (area = 3.14 * radius**2)

length and breadth in the case of a rectangle (area = length * breadth).

7. Write a program to read two numbers and display which is the largest and smallest

of the numbers entered.

Enter first number: 4
Enter second number: 5

5 is the largest number
4 is the smallest number

 35

Lesson 4 Assignments

1. Write	a	program	that	prompts	the	user	to	enter	their	exam	score	(out	of	100).	If	the	
score	is	90	or	above,	print	'You	got	an	A!'	If	the	score	is	between	80	and	89,	print	'You	
got	a	B.'	If	the	score	is	between	70	and	79,	print	'You	got	a	C.'		
	

2. Write	a	program	to	calculate	how	much	someone	gets	paid	per	week	based	on	the	
number	of	hours	they	work	per	week.	The	program	asks	the	user	to	enter	the	number	
of	hours	worked	and	the	rate	per	hour	and	then	displays	the	total	pay		
	
The	program	must	check	that	the	number	of	hours	worked	does	not	exceed	100	and	
display	an	appropriate	message	if	this	is	the	case.	It	must	also	check	that	the	rate	per	
hour	does	not	exceed	25.	It	should	also	check	that	the	above	numbers	are	greater	
than	zero	e.g.	

Enter number of hours worked: 120
Number of hours too large

Enter number of hours worked: -5
Number of hours must be greater than 0

3. Write	a	program	to	play	a	guessing	game.	Th	eprogram	'knows'	a	secret	word	e.g.	
'car'.	The	user	is	asked	to	guess	the	secret	word	and	an	appropriate	message	is	
displayed:	

Guess the secret word: blue
blue is not the secret word ! Try again !

	
Guess the secret word: car
Well done – you guessed it!

4. Write a program to read three numbers and display which is the largest and smallest
of the numbers entered.

Enter first number: 4
Enter second number: 7
Enter third number: 1

7 is the largest number
1 is the smallest number

5. Write a program that prompts the user to enter an exam score (out of 100). If the

score is 90 or above, display 'You got an A'. If the score is between 80 and 89,
display 'You got a 'B'. If the score is between 70 and 79, display 'You got a C'. If the
score is between 60 and 69, display 'You got a D'. If the score is below 60, display
'You got an E'.

 36

Lesson 5: Loops - while statement

We often wish to repeat one or more statements in a program. This is called looping or
repetition.

There are a number of looping techniques, but basically all program looping can be
performed using a while loop.

Loops are another form of conditional statement. In the case of a loop, we use the
condition to decide whether to repeat a statement(s) or not.

 while condition:
 action statement(s) # loop body

rest of program statements

The action statement(s) is only carried out if the condition is true in the same way as for an
if statement.

The action statement(s) of a loop is referred to as the loop body. This may be a single
statement or a group of statements.

After executing the loop body, the loop condition is tested again.

If the condition is still true, we execute the loop body and test the condition again.

This process continues until the condition evaluates to false.

When the loop condition evaluates to false, then the loop body is skipped and the rest
of program statements are executed.

The loop body statements may never be executed – this happens if the loop condition
evaluates to false the first time the while statement is executed.

 37

Example L5.1
Modify the calculator program to sum pairs of numbers, until the user enters 0 as one of
the numbers. We read in the two numbers to be summed, calculate the sum and display
the result. We repeat these steps until the user enters 0.

We use a while loop to repeat the necessary statements:

calc4.py: Repeat adding 2 numbers until user enters 0

n1 = 1 # Assign non-zero so that we can start the loop
n2 = 1

while (n1 != 0) and (n2 != 0) :
 n1 = float(input('\nEnter first number [0 to quit]: '))
 n2 = float(input('\nEnter second number [0 to quit]: '))
 sum = n1 + n2
 print(f'\nThe sum of {n1} and {n2} is {sum} \n\n')

print ('\n\nFinished summing\n')

The loop body is highlighted in blue. The loop body statements are repeated until the user enters
0 for one of the numbers, as shown below.

When the loop condition evaluates to false, the loop terminates and the first statement after the
loop body is executed – here it is a print to display that the program is finished.

Enter first number: 4
Enter second number: 6
The sum of 4.0 and 6.0 is 10.0

Enter first number: 20
Enter second number: 30
The sum of 20.0 and 30.0 is 50.0

Enter first number: 0
Enter second number: 6
The sum of 0.0 and 6.0 is 6.0

Finished summing

How Many Loop Iterations ?
The user may wish to sum 1 pair of numbers or 100 pairs. The user indicates if they wish
to finish by entering 0 for the one of the numbers. This type of loop is called aa non-
deterministic loop, as you do not know in advance how many times it will be repeated.

In the next example we specify how many times we want to repeat the loop body. We call
this a counting loop. It is also called a deterministic loop, as it is determined in advance
how many repetitions (iterations) to carry out that is how many times we repeat (iterate) the
loop body.

 38

Example L5.2

Modify the L5.1 to sum three pairs of numbers. In other words we wish to read in the two
numbers to be summed, calculate the sum and display the result, three times.

We sometime call such a loop a counting loop.

calc5.py: Calculator program to add 2 numbers, 3 times

count = 1

while count <= 3:
 n1 = float(input('\nEnter first number: '))
 n2 = float(input('\nEnter second number: '))
 sum = n1 + n2
 print(f'\nThe sum of {n1} and {n2} is {sum} \n\n')
 count = count + 1

print ('Finished summing\n')

calc5.py outputs:

>>> %Run calc4.py

Enter first number: 1
Enter second number: 2

The sum of 1.0 and 2.0 is 3.0

Enter first number: 3
Enter second number: 4

The sum of 3.0 and 4.0 is 7.0

Enter first number: 4
Enter second number: 5

The sum of 4.0 and 5.0 is 9.0

Finished summing

 39

The while statement tests the condition (count <= 4) and if it evaluates to true, the
statements in the loop body are executed and the condition is re-evaluated.

We assigned count the value 1 which is called initialising count. When we first assign a
value to a variable, we say we have initialised the variable.

When we run the program, count has the value 1, and so the condition evaluates to true
and the loop body is executed.

Inside the loop body we increase count by 1, so it has the value 2 after the first iteration
of the loop i.e. the first time we carry out the loop body statements.

The loop condition is then tested again and since count has the value 2, the loop body
will be executed again, increasing count to 3.

We repeat this process until count has the value 5. Now the loop condition evaluates to
false (count is no longer <= 3) and the loop is finished.

When the condition is false i.e. when count reaches 4, we skip the actions specified
by the loop body, and in this example, we execute the final print statement and the
program terminates.

The variable count is used in this example to control how many times we execute the
loop body. Such a variable is called a loop counter.

Each time we execute the loop body (go around the loop), we process one pair of numbers
and add 1 to count.

So after executing the loop 3 times, count will have the value 4. Each time you execute
the loop, the condition is tested. You only execute the loop body if the result is true. So
when count has value 4, we leave the loop (the loop terminates), i.e. we go to the next
statement after the loop body if any.

What would happen if we omitted the statement

 count = count + 1

from the loop body?

This is a very common error to make when using counting loops. If we omit the statement
to increment count, the loop will never terminate, as count will always be less than 5.
It is an example of an infinite or endless loop.

An endless loop may be terminated by interrupting the program or switching off the
computer, both of which terminate the program as. To interrupt a program, a combination
of keys is pressed, such as pressing the control key and the C key simultaneously (denoted
by Ctrl/C).

Such an error is a logical or runtime error. These differ from syntax errors because the
program can be executed but produces incorrect results.

 40

For this reason, they are more serious than syntax errors. In large programs, it is very
difficult to ensure that there are no logical errors. Thorough testing of programs may
increase our confidence that a program is correct, but such testing on its own, can never
establish the correctness of a program. It is important to bear this fact in mind and it is
worthwhile investigating the area of program correctness.

Example L5.3
Write a program to sum the integers 1 to 99 (i.e. calculate the sum of 1+2+3+...+99) and
display the result.

sum.py: calculate 1+2+3+.....+99

sum = 0 # contains the sum we wish to compute
i = 1 # the loop counter

while i <= 99:
 sum = sum + i
 i = i + 1

print(f'\nSum of 1 to 99 is: {sum}\n')

Executing this program produces as output:

Sum of 1 to 99 is: 4950

The loop body is executed only if the condition (i <= 99) evaluates to true. Since we
have initialised i to 1, the condition evaluates to true and the loop body is executed.

In the loop body, a running total for sum is calculated by adding the value of i to sum. The
variable sum is assigned the value sum + i. The variable i is then increased by 1.

We then test the condition again. The variable i now has the value 2 and the condition (i
<= 99)remains true so we execute the loop body assigning sum the value 3 (1+2) and
increasing i to 3.

Next time around the loop, sum becomes 6 (3+3) and i becomes 4. We test the condition
again and continue in this manner until i eventually reaches the value 100.

When we test the condition in this case, it evaluates to false (i.e. i is greater than 99) and
so the loop body is not executed. Instead we continue at the first statement after the loop
body i.e. the print statement.

 41

Example L5.4
Sometimes it is useful to put a print in the loop body so you can see what's happening
and also to get a better understanding of looping.

sum2.py: calculate the sum of 1 to 9

sum = 0 # contains the sum we wish to compute
i = 1 # the loop counter

while i <= 9:
 sum = sum + i
 print(f'\nSum = {sum} i = {i}) # display what's happening
 i = i + 1

print(f'\nSum of 1 to 9 is: {sum}\n')

Executing this program produces as output:

Sum = 1 i = 1

Sum = 3 i = 2

Sum = 6 i = 3

Sum = 10 i = 4

Sum = 15 i = 5

Sum = 21 i = 6

Sum = 28 i = 7

Sum = 36 i = 8

Sum = 45 i = 9

Sum of 1 to 9 is: 45

Programmers often use the short variable names i, j, k, and so on, as loop counters.

Variable Initialisation
In the last two examples it is crucial that the variables count and i are initialised to
appropriate values for the loop to operate correctly. As a general programming principle,
all variables should be initialised to appropriate values, usually at the beginning of a
program.

 42

The code for Example L5.1 can be improved. L5.1 does stop after 0 has been input for the
first number, it still reads the second number and adds it to 0 and displays that result. We
want the loop to stop after 0 has been entered as either first or second number. We also
do not want to be asked to enter the second number, if the first one was 0.:

The program below is an improved version:

Example L5.5

calc6.py: Calculator program to add 2 numbers until 0 entered

n1 = 1 # Assign non-zero so that we can start the loop
n2 = 1

while (n1 != 0) and (n2 != 0) :
 n1 = float(input('\nEnter first number [0 to quit]: '))
 if (n1 != 0):
 n2 = float(input('\nEnter second number [0 to quit]: '))
 sum = n1 + n2
 if (n2 != 0):
 print(f'\nThe sum of {n1} and {n2} is {sum} \n\n')

print ('\n\nFinished summing\n')

This program runs as follows:

Enter first number: 3

Enter second number: 3

The sum of 3.0 and 3.0 is 6.0

Enter first number: 0

Finished summing

And again

Enter first number: 3

Enter second number: 0

Finished summing

As you can see from the above program, you can use any statement in the loop body
including more conditionals. This time, once we read the 1st number, we check if it is 0 and
only if it is not 0, will we read the 2nd number. We only calculate the sum and display the
result if the second number is not 0.

 43

Example L5.6

Write a program to convert dollars to kyats using an exchange rate of 1 dollar = 2100 kyats.
Allow the user to keep entering vales until 0 is entered to quit.

convert_dollars.py: convert dollars to kyats until 0 entered

dollars = float(input('\nDollars [0 to quit]: '))

while (dollars != 0):
 kyats = dollars * 2100

 print(f'{dollars} dollars = {kyats:.2f} kyats ')
 dollars = float(input('\nDollars [0 to quit]: '))
print(f'\nFinished converting\n')

L5.6 outputs:

Dollars [0 to quit]: 7
7.0 dollars = 14700.0 kyats

Dollars [0 to quit]: 0

Finished converting

Debugging with Loops

As mentioned earlier, if you have difficulty understanding loops, it is a good idea when you
implement any of the loop programs to put a print statement in the loop body, so that you
can see how what is happening as the loop is repeated. For example in L5.2 the following
print could be inserted in the loop body:

print (f'\ncount = {count}') # display count as loop runs

This is also a useful debugging technique. Debugging is the term used for finding and
correcting errors (bugs) in your program.

By placing print statements in your code, you can trace (follow) the execution of your
program, inspecting the values of variables and checking if loops are executed the correct
number of times.

A print in the action part of an if statement allows you verify that the action was indeed
carried out. When your program is working correctly, these debugging print statements
are removed.

 44

The break statement
Sometimes we wish to terminate a while loop without having to wait for the lop condition
to become false. We use the break statement to do this. It stops the loop and the
program continues at the first statement after the loop body the loop.

Example L5.7
A guessing game program. The user has to try to guess a "secret" word built into the
program.

guess2.py: Guess the secret word

secret = 'blue'
guess = ' '

while (guess != secret) and (guess != 'quit'):

 guess = input('Guess the secret word:[quit to finish] ')

 if guess == 'quit':
 break # Exit the loop
 if guess != secret:
 print(f'\nWrong guess: {guess}')
 else:
 print(f'\nWell done !') # end of loop

if (guess == 'quit'):
 print(f'\nThe secret word was: {secret}')

If the user enters 'quit' then the break statement terminates the loop and the first
statement after the loop body is executed i.e. the print to display the secret word.
Note: The loop in this program can terminate in two ways. It will terminate if the loop
condition is false (for example the user guesses the word) OR if the user enters 'quit'.

This means that when the loop terminates, we need to check if it was because the user
entered 'quit'. And display the appropriate message in that case.

Running guess2.py:

Guess the secret word: man
Wrong guess: man
Guess the secret word: dog
Wrong guess: dog
Guess the secret word: quit
The secret word was: blue

Running guess3.py:
Guess the secret word: black
Wrong guess: black
Guess the secret word: blue
Well done !

 45

Example L5.8
A guessing game program with limited number of guesses. The user has to guess a
"secret" word built into the program but has only 3 chances to guess it.

Algorithm for this guessing game program

We explained the concept of an algorithm earlier. It is the set of set of steps to solve a
problem. We usually write algorithms in what is called pseudo code. This is a cross
between English and programming language statements. There is no defined version of
pseudo code, so you can make up your own version.

In my pseudo code, I use the word repeat until … end repeat for a loop. It can be
read as "repeat the statements from repeat to end repeat while the condition is true.
In the example below the loop body is highlighted in blue.

Because we are now using conditionals (if and while) our programs are becoming
longer and more complex. So it is a good idea to develop an algorithm for your program
before writing the actual code.

Guessing game algorithm

Set number of guesses to 1
Set guess to blank
Set the secret word in the program

Repeat until guess is correct, or quit or number guess > 3
 Ask the user to guess the word or quit
 If guess is 'quit'
 Exit the loop
 If guess is incorrect then
 Display error message
 Add 1 to number of guesses
 Else
 Display Correct guess message
End repeat

If guess is quit
 Display quit message
Else
 Display too many guesses message

Program terminates

 46

We now implement the algorithm in Python.

L5.8: guess3.py: Guess the secret word in 3 guesses

secret = 'blue'
guess = ' '
num_g = 1 # number of guesses

while (guess != secret) and (guess != 'quit') and (num_g < 4):
 guess = input('Guess the secret word:[quit to finish] ')
 if guess == 'quit':
 break # Exit the loop
 if guess != secret:
 print(f'\nWrong guess: {guess}')
 num_g = num_g + 1
 else:
 print(f'\nWell done !') # end of loop

if (guess == 'quit'):
 print(f'\nThe secret word was: {secret}')
else:
 print(f'\n Sorry you have used 3 guesses')
 print(f'\nThe secret word was: {secret}')

Running guess3.py:

Guess the secret word: man
Wrong guess: man
Guess the secret word: dog
Wrong guess: dog
Guess the secret word: red
Sorry you have used 3 guesses')

The secret word was: blue

Running guess3.py:
Guess the secret word: black
Wrong guess: black
Guess the secret word: blue
Well done !

 47

Nested Loops
A loop may contain as part of its loop body any statement including another loop. A loop
inside the body of a loop is called an inner loop or nested loop. The nested loop may in
turn contain a loop as part of its loop body and so on.

Example 5.9: Write a program to read in the marks for a group students and display
the average mark for each student based on the entered marks. There are 3 grades for
each student. The programs allows the user enter as many students as they wish, finishing
when the name 'quit' is entered.

Algorithm

Read name
Repeat until name is quit
 Set sum to 0
 Set number of marks to 1
 Repeat until number of marks > 3 # nested loop
 Read mark
 Add mark to sum
 Add 1 to number of marks
 End repeat # end of nested loop

 Compute average - = sum / 3
 Display Average mark for name
 Read next name
End repeat # end of outer loop
Display finished message

L5.9 average.py: Compute average mark for students
There are 3 marks for each student

name = input('\nEnter name: [quit] :')

while (name != 'quit'):
 nm = 1 # number of marks entered
 sum = 0.0
 while (nm <= 3):
 mark = float(input(f'Enter mark {nm}: '))
 sum = sum + mark
 nm = nm + 1 #end of inner loop
 average = sum / 3

 print(f'Average mark for {name} : {average:.2f}')

 name = input('\nEnter name: [quit] : ')
 # end of outer loop

print(f'\nFinished \n')

L5.9 runs as follows

 48

Enter name: [quit] : Joe
Enter mark 1: 50
Enter mark 2: 60
Enter mark 3: 70
Average mark for Joe : 60.00

Enter name: [quit] : Mary
Enter mark 1: 70
Enter mark 2: 80
Enter mark 3: 85
Average mark for Mary : 78.33

Enter name: [quit] : quit

Finished

Note the use of an f-string in the input statement:

 mark = float(input(f'Enter mark {nm}: '))

This allows us display which of the three marks is being entered (1, 2, or 3) as shown in
the output above.

Example 5.10:
Use a nested loop to display triangle made of stars (*). Display 4 lines so that:

1 star is displayed on line 1;
2 stars displayed on line 2,
3 stars displayed on line 3 and
4 stars displayed on line 4.

The output appears as follows which is the shape of a triangle made of stars:

*
**

 49

tri.py: displays triangle composed of *'s
This program does NOT work

num_lines = 1

while num_lines <= 4:
 num_stars = 1
 while num_stars <= num_lines: # inner loop
 print(f'*')
 num_stars = num_stars + 1 #end inner loop

 print('\n') # start new line
 num_lines = num_lines + 1 # end outer loop

The inner loop displays the correct number of * characters on each line. The outer loop
controls the number of lines displayed.

However, this program does not work as intended. It displays the stars on separate lines:

*

*
*

*
*
*

*
*
*
*

This is because the print function adds the newline character at the end of its output. To
stop print doing this, we add a new element called end to print, as follows:

print(f'*', end = '') # instructs print not to output newline

There is no space between the quotes in end = ''

We use this version of print in the L5.11 below and we get the following output:

*

**

 50

Example 5.11
This is the amended version of L5.11 to display a triangle.

tri2.py: displays triangle composed of *'s

num_lines = 1

while num_lines <= 4:
 num_stars = 1
 while num_stars <= num_lines: # inner loop
 print(f'*', end = '')
 num_stars = num_stars + 1 #end inner loop

 print('\n') # start new line
 num_lines = num_lines + 1 # end outer loop

 51

while loop summary

We use the while loop to repat statements. From the examples above we can see two
common ways it is used

1. Repeat statements until user enters data to indicate they are finished (e.g. 'quit',
0)

name = input('\nEnter name: [quit] :')

while (name != 'quit'):
 statement1
 statement2
 # as many statements as you wish

 name = input('\nEnter name: [quit] : ')

rest of program after loop

2. Repeat statements a fixed number of times – counting loop.

 i = 0 # counter
 n = 10 # number of iterations, can be read in etc

 while (i < n):
 statement1
 statement2
 # as many statements as you wish
 i = i + 1 #increase loop counter

rest of program after loop

We often count from 0 in programming. Thus to repeat the above loop 10 times the
counter i has the value 0, 1, 2, ,3, 4, 5, 6, 7, 8, and 9 as we go around the loop. When i
becomes 10, the loop terminates because 0 to 9 is 10 iterations.

 52

Lesson 5 Exercises
1. Will the following loop finish ?

j = 0
while j < 10:
 print(f'j = {j}')
j = j + 1

2. Display the text		'Hello World'	on 5 separate lines using a while loop.

3. Write a program that uses a while loop to display the numbers 1 to 10 on separate
lines.

4. Write a program that uses a while loop to sum the numbers: 2, 4, 6, 8, 10, 12,
14,16,18 and 20. The program then displays the sum of the numbers. [Hint: The
loop counter is increased in increments of 2].

5. Write a program that reads numbers entered by the user, until the user enters 0.
The program computes the sum and average of the numbers. The program then
displays the sum and average.

6. Write a program to show a menu of areas and to calculate the area chosen by the

user. After each area has been calculated, the program displays the menu again.
The program continues until the user chooses the 'x' option. The output is shown
in italics below

Choose one of the following options:

 s for the area of a square
 c for the area of a circle

r for the area of a rectangle

x Exit program

Enter your choice: r
Enter length: 4
Enter breadth: 5

Area of rectangle is: 20.0

Compute Area of one of the following:

 s for the area of a square
 c for the area of a circle

r for the area of a rectangle

Enter your choice: x

Area calculation program finished

 53

Lesson 5 Assignments

1. Write a program that prompts the user to enter their exam score (out of 100). If the
score is 90 or above, display 'You got an A!' If the score is between 80 and 89,
display 'You got a B.' If the score is between 70 and 79, display 'You got a C.

The programs continues the above process until the user enters a score of 0

2. Write a program to keep calculating how much someone gets paid per week until the
user enters 'quit'. The program asks the user to enter the number of hours worked and
the rate per hour and then displays the total pay.
The program must check that the number of hours worked does not exceed 100 and
that the rate per hour does not exceed 25.

3. Modify Example L5.9 to allow the user enter as many grades as they wish for each
student, finishing when the mark 0 is entered for that student. It then displays the
average mark for that student as in L5.9. The programs allows the user enter
marks for as many students as they wish, finishing when the name 'quit' is
entered.

4. Write a program to display 6 lines with

5 Spaces followed by 1 star on line 1
4 spaces followed by 2 stars on line 2
3 spaces followed by 3 stars on line 3
2 spaces followed by 4 stars on line 4
1 spaces followed by 5 stars on line 5
0 spaces followed by 6 stars on line 6

 The output should appear as follows:

 *
 **

5. Modify program 3 above to output a what looks like a “tree” as follows

 *

 54

Lesson 6: Strings, Lists and for loop

Strings

A string is a sequence (array) of characters.

It is easy to create a string in Python e.g. assign a string to a variable as in:

primary_colours = 'red, orange, yellow, green, blue, indigo,
violet'

colours = 'pink, white, black, brown, grey'

bye = 'Goodbye everyone \n'

We can also use input to create a string:

address = input('\nEnter your address on 1 line')

A string is made up of elements. The elements are the individual characters that make up
the string.

We can access any element of a string, by using its position in the string. This is called its
index or subscript. We put the index in side [] brackets after the name of the string:

Take the string bye:

 bye = 'Goodbye everyone \n'

The character bye[0] refers to element 0 of the string bye. This is the 1st element in
the string bye – the character 'G'.

Python (C, Java, Perl) specifies that strings begin at index 0. It is quite common in
computing to count from 0.

This means that element 0 (element[0]) of any string in Python is always the 1st
element of the string.

The character colours[1] refers to the 2nd element in the string colours– i.e. the
character 'i'.

 55

You can access the characters in a string one at a time, using the index. The index indicates
which character is accessed in the string. For example, consider the following code:

animal = 'elephant'

letter = animal[3]

letter now contain 'p'

print(f'first 3 letters are: {animal[0]} {animal[1]} {animal[2]}')

displays

first 3 letters are: e l e

String Length - len

The len function gives us the length of a string e.g.

l = len('abcd')

gives l the value 4. Note the elements of the string go from 0 to 3 for a 4 character string.

s = 'abcdef'

l = len(s) # l = 6 in this case

print (f'length of s: {l}\n')

digits = '0123456'

ld = len(digits)

print(f'length of 1st 7 digits is: {ld}')

outputs

length of s: 6

length of 1st 7 digits is: 7

Note: Because we start strings at index 0, the last character in any string is always at index
(length_of_string – 1).

So the last character of the string s above is at position 3 (4 - 1) and the last characters
of the string digits above is at position 6 (7-1).

 56

Example L6.1
Write a program to output the characters in a string on separate lines.

str.py: Output each characters on a newline

string = 'abc'

length = len(string) # 3 in this case

i = 0
while (i < length): # displays elements 0, 1 and 2

 print(string[i])
 i = i + 1

Output

a
b
c

Concatenating Strings

We use the + operator to add one string on to the end of another string – this is called
concatenation.

s1 = 'abc'
d1 = '456'

s2 = s1 + d1 # s2 is 'abc456'
print (s2)

print (s1 + ' ' + d1)

Output

abc456
abc 456

 57

Example L6.2
Write a program to read a name and 3 lines of address. The program displays the name
and 3 lines of address on a single line.

name = input('Enter name: ')
addr1 = input('Enter Address line 1:')
addr2 = input('Enter Address line 2:')
addr3 = input('Enter Address line 3:')

print (f'\n', name + ' ' + addr1 + ' ' + addr2 + ' ' + addr3)

Output

Enter name: Super Man
Enter Address line 1: Time Square
Enter Address line 2: New York
Enter Address line 3: USA

Super Man Time Square New York USA

Other operations on Strings

Python allows you perform many other operations on strings and we only look at three of them in
this Handbook. We use a different mechanism to carry out these operations – it is called using
methods from a form of programming called object-oriented programming.

In this form of programming, a string is regarded as an object and to carry out an operation on an
object you perform a method on the object.

For example, we often want to convert all the alphabetic characters (A to Z, a to z) in a string to
uppercase (A to Z) or to lowercase (a to z).

Python provides the methods lower and upper to do these conversions. For example, the code
below will convert any uppercase characters in the string s to lowercase and assign the new
string to the variable t:

Example L6.3

s = 'ABC def 123 +^*'

t = s.lower()

print (f' s is: {s} \n')
print (f' t is: {t} \n')

Output:

s is: ABC def 123 +^*

t is: abc def 123 +^*

The statement t = s.lower() converts all uppercase letters in s to lowercase and
stores them in t.

 58

Note: The string s is unchanged. You cannot change the elements in a string in Python
we say that strings are immutable in Python e.g. you cannot use s[0] = 'x' to
change an element of a string.

Example L6.4: Convert to uppercase

t = s.upper() converts all lowercase letters in s to uppercase and stores them in t

s = 'ABC def 123 +^*'

t = s.upper()

print (f' s is: {s} \n')
print (f' t is: {t} \n')

Output:

s is: ABC def 123 +^*

t is: ABC DEF 123 +^*

Why bother converting characters in a string to either upper or lower case ?

Converting strings to lower or uppercase is really useful when we want to compare
strings. For example if you are searching for someone's name, it should not matter how
you enter it e.g Joe, joe, JOE are all the same name BUT they are different strings. The
following code shows the problem:

name = 'JOE'
if name == 'joe':
 print ('Names match')
else:
 print ('Names do not match')

Output

 Names do not match

We solve this problem by converting the name string to the same case either uppercase
or lowercase:

name = 'JOE'
name = name.lower()
if name == 'joe':
 print ('Names match')
else:
 print ('Names dont match')

Output

 Names match

 59

We can use this technique to improve our guessing game program, so that it will not
matter whether the user enters their guess in uppercase, lowercase or mixed case

Example L6.4
Write a guessing game program to ignore the case of the user guess

guess3.py: Guess the secret word
Ignores case of words e.g. BLUE matches bluE

secret = 'Blue'
guess = ' '
num_chances = 1

secret = secret.lower() # convert to lowercase

while (guess != secret) and (num_chances <= 3) :

 guess = input('Guess the secret word: ')

 guess = guess.lower() # convert to lowercase

 if guess != secret:
 print('\nWrong guess: ', guess)
 num_chances = num_chances + 1
 else:
 print('Well done !')
if num_chances > 3:
 print('Sorry you have used all of your guesses')
 print('The secret word was: ', secret)

Output:

Guess the secret word: BLUE
Well done !

 60

Other String operations: in, isupper, islower, isdigit

The in operator allows us check if a string (1 or more characters) is part of another
string.

The condition e in str is True if e is contained in the str and False otherwise:

str = 'bread gums blue black'

if 'gum' in str:
 print(f'Yes gum is in {str}')

if 'k' in str:
 print(f'k is in {str}')

if 'car' in str:
 print('Yes car in string')
else:
 print('Car not in string')

Output

Yes gum is in bread gums blue black
Yes k is in bread gums blue black
Car not in bread gums blue black

The method isupper returns true if the string is all uppercase (A to Z).

The method islower returns true if the string is all lowercase (a to z).

Numbers, symbols and spaces are ignored by isupper and islower - only
alphabet characters are checked.

The method isdigit returns true if the string is all digits (0 to 9).

The 3 methods above can be applied to single character or multi character strings.

a ='Hello World!'"
d= 'MAN. UTD'

print(a.isupper())
print(d.isupper())

Output:

False
True

 61

We can test individual characters in a string by using their index:

a ='Hello World!'
b = '123456 +*!'

print(a[0].isupper()) # check if H is uppercase
print(b[0].isupper()) # check if 1 is upperacse

Output

True
False

The isdigit method returns True if all the characters in a string are digits, otherwise it
False.

b = '123456'
c = 'MAN UTD 123'

print(b.isdigit())
print(c.isdigit())

print(c[10].isdigit()) # check character 11 of c - '3'
print(b[0].isdigit()) # check character 0 of b - '1'

Output

True
False
True
True

Example L6.5
Write a program to test is a user password is valid. For this program, valid passwords are
defined to obey the following rules:

• Must be at least 6 characters long
• Must contain 1 uppercase character
• Must contain 1 lowercase character
• Must contain 1 digit

The program allows the user test multiple passwords and enter 'Q' or 'q' to finish.

 62

password.py: Check if a password is valid
Length >= 6; must have 1 of each of upper, lower and digit chars

password = input('Enter password: ')

while password != 'q' and password != 'Q':
 i = 0
 n = len (password)
 if n < 6:
 print (f'{password} too short \n')
 else:
 while (i < n) :
 c = password[i] # check for uppercase character
 if c.isupper() : # found an uppercase character
 break # leave loop if found uppercase
 else:
 i = i + 1
 if i == n:
 print (f'Invalid password -no uppercase:
{password}\n')

 else: # check lowercase

 i = 0
 while (i < n) :
 c = password[i]
 if c.islower() : # found lowercase
 break
 else:
 i = i + 1
 if i == n:
 print (f'Invalid password -no lowercase:
 {password}\n')

 # check is there a digit
 else:
 i = 0
 while (i < n) :
 c = password[i]
 if c.isdigit() : # found a digit
 break
 else:
 i = i + 1
 if i == n:
 print (f'Invalid password - no digit:
 {password}\n')
 else:
 print(f'{password} is valid\n')

 password = input('Enter password: ')

 63

Output:

Enter password: asdf123
Invalid password -no uppercase: asdf123

Enter password: ASDFGGHHHJJ
Invalid password -no lowercase: ASDFGGHHHJJ

Enter password: Abc123456
Abc123456 is valid

Enter password: accs
accs too short

Enter password: q

Finally strings are immutable – this means that you cannot change the individual
characters of a string e.g.

s='AbbA'

	

 64

Lists

We encounter examples of lists in our daily lives:

• shopping list of things to buy
• list of students in a class
• list of employees in a company

Python provides us with a data type to handle lists. A data type refers to the type of value
a variable has. We have already used the data types integers, floats and strings in our
programs.

It is easy to create and use lists in Python. We give the list a name and we access the
items in the list using an index (subscript) in the same way that we used an index in
accessing the elements of a string.

In the lists below, 0, 10, 1, n, 22 and i are examples of an index:

• shop_list[0], shop_list[10] # access 1st and 11th elements

• student[1], student[n] # 2nd and (n+1)th elements

• employee[22], employee[i] # 23rd and (i+1)th elements

Python is very flexible in what you can store in a list e.g.

A list of items we wish to buy in the shops.

shop_list = ['bread', 'milk', 'coffee', 'sugar']

A list of student names in a class.

student = ['Bat Man', 'Super Man', 'Wonder Woman', 'Green Hulk']

A list of student names with their grades in three subjects (Maths, Science and History).

grades = ['Bat Man', 'Maths', 60, 'Science', 70, 'History', 55,
'Super Man', 'Maths', 90, 'Science', 950, 'History', 80]

A list of employee names with their rate of pay per hour and the number of hours they
worked in a week.

employee = ['Harry Potter', 12, 40, 'Wonder Woman', 15, 35,
'Hulk', 10, 38]

The first element in a list is always element 0

 65

We access the elements as follows:

shop_list[0] has value 'bread'

student[2] has value 'Wonder Woman'

grades[4] has value 70

employee[7] has value 10

We can use a loop to process all of the items in a list as follows:

shop_list = ['bread', 'milk', 'coffee', 'sugar']

print (f'Weekly Shopping List')
i = 0
while i < 4:
 print(shop_list[i])
 i = i+ 1

Output

Weekly Shopping List
bread
milk
coffee
sugar

The following list stores the name of a student and their marks in Maths, Science and History. We
use it to display the student's grades on separate lines.:

grades = ['Joe Carthy', 'Maths', 60, 'Science', 70, 'History', 55]

print(f'Grades for: {grades[0]} are')
i = 1
while i < 6:
 print(f'{grades[i]} {grades[i+1]}')
 i = i+ 2

Output

Grades for: Joe Carthy are
Maths 60
Science 70
History 55

Why do we increment i by 2 in the above loop?

 66

Lists are mutable – this means that you can change individual elements of the list e.g.

shop_list = ['bread', 'milk', 'coffee']

print(f'Original List is')

j = 0
while j < 3:
 print(f'Element {j} is: {shop_list[j]}')
 j = j + 1

shop_list[1] = 'tea' # change element 2

shop_list[2] = 'cake' # change element 4

print(f'\nNew list is')
j = 0
while j < 3:
 print(f'Element {j} of list is: {shop_list[j]}')
 j = j + 1

Output:

Original List is
Element 0 is: bread
Element 1 is: milk
Element 2 is: coffee

New list is
Element 0 of list is: bread
Element 1 of list is: tea
Element 2 of list is: cake

You can see elements 1 and 3 have changed.

Empty List []
An empty list (list with no items in it) is denoted by [] e.g.

List = []

You can add an entry to any list by using the append method e.g.

List.append('hello')

adds the string 'hello' to List which now is ['hello']

shop_list = ['bread', 'milk', 'coffee', 'sugar']

shop_list.append('jam')

adds 'jam' to shop_list which now becomes:

['bread', 'milk', 'coffee', 'sugar', 'jam']

 67

Example L6.6
Write a program that takes a list of student names with one mark per student to compute
the average class mark. The program then displays the list of students, their mark and the
deviation (difference) between their mark and the class average.

L6.6 grade.py: Compute average mark for students in a list
List has name of each student and their mark in a text
There is 1 mark for each student

grades = ['Joe', 50, 'Tom', 65, 'Mary', 80, 'Ann', 90]

n = len (grades) #number of entries in list

j = 0
sum = 0.0

while j < n :

 mark = float(grades[j+1])
 sum = sum + mark
 j = j + 2

average = sum / (n/2) # there are n/2 marks in the list

print (f'Class average {average:.2f}\n')
print(f'Name Mark Deviation from Class average\n')

j = 0
process list in pairs (0,1), (2,3), (4,5) and (6, 7)
while j < n :
 diff = grades[j+1] - average
 print(f'{grades[j]} {grades[j+1]} {diff:.2f}')
 j = j + 2

print(f'\nFinished \n')

Output

Class average 71.25

Name Mark Deviation from Class average

Joe 50 -21.25
Tom 65 -6.25
Mary 80 8.75
Ann 90 18.75
Finished

A negative deviation indicates that student mark was less than the class average i.e. the student
di not do as well as their class peers. A positive deviation indicates that the student performed
better than their peers.

 68

Example L6.7
Modify the L6.6 to read the student name and mark from the user until the user enters quit.

L6.7 grade2.py: Read names and marks from user

grades = [] # empty list to start
sum = 0.0
n = 0 # number of students

name = input('\nEnter name: [quit]: ')

while (name != 'quit'):
 grades.append(name) # Add name to list
 mark = float(input(f'Enter mark for {name}: '))
 grades.append(mark) # Add mark to list
 sum = sum + mark
 n = n + 1
 name = input('\nEnter name: [quit]: ')

average = sum / n # there are n marks in the list

print (f'\n\nClass average {average:.2f}\n')
print(f'Name Mark Deviation from Class average\n')

nm = len (grades) # number of elements in grades
j = 0

process list in pairs (0,1), (2,3), (4,5) and so on
while j < nm :
 diff = grades[j+1] - average
 print(f'{grades[j]} {grades[j+1]} {diff:.2f}')
 j = j + 2 # 2 elements per student

print(f'\nFinished \n')

Output:
Enter name: [quit]: Joe
Enter mark for Joe: 55

Enter name: [quit]: Tom
Enter mark for Tom: 62

Enter name: [quit]: Jane
Enter mark for Jane: 75

Enter name: [quit]: quit

Class average 64.00

Name Mark Deviation from Class average
Joe 55.0 -9.00
Tom 62.0 -2.00
Jane 75.0 11.00
Finished

 69

Example L6.8
Write a program that takes a list of employee names, number of hours worked in a week
and the rate of pay per hour. The program displays the weekly pay calculated for each
employee in the list.

pay.py: Calculate and display hourly pay
list in format Name Hours_worked Rate_per_hour

emplist = ['J Carr', 35, 10, 'S Smith', 40, 15, 'T Dunn', 25, 10]

n = len (emplist)
j = 0

while j < n:

 hours_worked = float(emplist[j+1])
 rate_per_hour = float(emplist[j+2])

 pay = rate_per_hour * hours_worked

 print(f'{ emplist[j]} ')
 print(f'Pay Hours worked Rate per hour')
 print(f'{pay} {hours_worked} {rate_per_hour}\n ')

 j = j + 3 # 3 entries per employee
print(f'\nFinished')

Output

J Carr
Pay Hours worked Rate per hour
350.0 35.0 10.0

S Smith
Pay Hours worked Rate per hour
600.0 40.0 15.0

T Dunn
Pay Hours worked Rate per hour
250.0 25.0 10.0

Finished
>>>

 70

The range() function

This function returns a sequence of numbers in a given range for example

range (stop) generates a list from 0 to stop - 1 , not including stop

range(6) returns: 0,1,2,3,4,5 # integers up to but not including 6

range (start, stop) generates a list from start to stop, not including stop

range (1, 8) # yields 1, 2, 3, 4, 5, 6, 7

range (2, 6) # yields 2, 3, 4, 5

range(start, stop, step) generate list from start to stop, not including stop,

by increments of size step

range (2, 12, 3) # yields 2, 5 ,8, 11

for Loop
There is another form of loop construct called the for loop. It is used when we know the
number of times we wish to repeat the loop body. We often use the for loop to process a
list of items in combination with the range() function.

The general form may be written as

for val in sequence:
 loop body statements

print first 5 integers
using python range() function

for i in range(5):
 print(i, end=' ')
print()

outputs: 0 1 2 3 4

The variable i takes on the next value in the sequence each time you go around the loop.

We can re-write the program to sum the integers 1 to 99 using a for loop as follows

sum3.py: Sum 1 + 2 + 3 + ... +99

sum = 0 # contains the sum we wish to compute
for i in range(1, 100):
 sum = sum + i

print('\nSummation is:', sum, '\n')

 71

In this case, variable i starts with value 1 which is added to sum, then i becomes 2 which
is added to sum and so on until i becomes 99. Remember that range (1, 100)
generates the list from 1 to 99 – the stop value of 100 is NOT included in the list.

The for loop is usually used when we wish to process all the elements in a string or a a
list.

Example L6.9 – rewrite L6.1 using for loop
Write a program to output the characters in a string on separate lines.

str.py: Output each characters on a newline

string = 'abc'

length = len(string) # 3 in this case

for i in range(length): # displays elements 0, 1 and 2

 print(string[i])

Example L6.10 – rewrite L6.8 using for loop
Write a program that takes a list of employee names, number of hours worked in a week
and the rate of pay per hour. The program displays the weekly pay calculated for each
employee in the list.

pay.py: Calculate and display hourly pay
list in format Name Hours_worked Rate_per_hour

emplist = ['J Carr', 35, 10, 'S Smith', 40, 15, 'T Dunn', 25, 10]

n = len (emplist)

for j in range (0, n, 3): # process list in steps of 3

 hours_worked = float(emplist[j+1])
 rate_per_hour = float(emplist[j+2])

 pay = rate_per_hour * hours_worked

 print(f'{ emplist[j]} ')
 print(f'Pay Hours worked Rate per hour')
 print(f'{pay} {hours_worked} {rate_per_hour}\n ')

print(f'\nFinished')

 72

We can also use the for loop to process strings or lists without using an index:

for x in string
 process element x of string

for x in list
 process element x of list

In these cases the variable x takes on the value of each element of the string or list,
starting with element 0, then element 1 and so on.

String example:

s = 'abc'
for x in s
 print(f'{x}')

Output:
a
b
c

List example

shop_list = ['bread', 'milk', 'coffee', 'sugar']

print (f'Weekly Shopping List')

for j in shop_list:
 print(f'{j}')

Output:

Weekly Shopping List
bread
milk
coffee
sugar

 73

Lesson 6 Exercises

1. Write a program that asks the user to enter a character. If the character is a vowel
(a, e, i, o, u), print "It is a vowel."[Hint: Use the	if e in		construct]

2. Write a program that asks the user to enter a string. If the string contains a vowel
(a, e, i, o, u), print "String contains a vowel."

3. Rewrite L6.6 using for loops: a program that takes a list of student names with one
mark per student to compute the average class mark. The program then displays
the list if students, their mark and the deviation (difference) between their mark and
the class average.

4. Write a program to read a string and count the number of digits (0,1,2,..9) in it

Enter a string: 12abc34def56
There are 6 digits in 12abc34def56

5. Write a program to read a string and count the number of uppercase letters (A..Z)
and lowercase letters (a..z) in the string

Enter a string : ABC defg
3 uppercase letters and 4 lowercase letters in ABC defg

Lesson 6 Assignments

1. Write a program to test is a user password is valid. For this program, valid
passwords are defined to obey the following rules:

Must be at least 6 characters long
Must contain 1 uppercase character
Must contain 1 lowercase character
Must contain 1 digit
Must contain one special character from '!@£$%^&*'

The program allows the user test multiple passwords and enter 'Q' or 'q' to
finish.

2. Write a program that allows the user search the list L below for a colour and tell
the user if the colour is in the list. It should allow the user to keep searching
until the user enters 'Q' or 'q'.

L = ['blue', red', 'pink', 'yellow', 'green', 'grey',
'black']

3. Write a program that prompts the user to enter a list of colours. It then allows
the user to search this list for a colour and tell the user if the colour is in the list.
It should allow the user to keep searching until the user enters 'Q' or 'q'.

 74

4. Write a program that allows the user search a list L of stolen cars. L contains
the car registration number, the owner's name and phone number. The user
can search the list to check if a car is stolen, in which case it display the
owner's name an number:

L = ['2022wx1678', 'Joe Carthy', '08612345', '2021D5667',
'Mary Smith', '087889988']

Enter car registration: 2022wx1678
Car stolen: Owner is Joe Carthy, 08612356

Enter car registration: 2020WW1213
Car stolen: Car not stolen

Enter car registration: q
Finished searching

5. Rewrite program 4 above to firstly prompt the user to enter the list of stolen

cars and then allows the user search the list as in 4 above:

Enter car registration: 2022wx1678
Enter owner name Joe Carthy
Enter phone number: 08612356

Search for a stolen car – enter registration: 2022wx1678
Car stolen: Owner is Joe Carthy, 08612356

Search for a stolen car – enter registration: q
Finished searching

 75

Appendix 1: Solutions

Lesson 1 Solutions

1.	What	is	the	output	of	the	following	print	statement?		

print('Have a great day!')

c.	Have	a	great	day!		

	

a. What	is	the	output	of	the	following	statements?	
print('Hi there!')
print('How are you doing?')

Hi	there!		
							How	are	you	doing?		

b. Write	a	program	that	prints	a	message	saying		

I	love	Python!		

print('I love Python! ')

	

c. Write	a	program	that	prints	a	message	saying	your	name	and	your	age,	e.g.		

My	name	is	Colin.	I	am	20	years	old!		

print('My name is Colin. I am 20 years old! ')

	

d. Write	a	program	to	display	the	message	'Welcome	to	Python'	three	times,	on	separate	
lines	using	three print	statements.		

print('Welcome to Python! ')

print('Welcome to Python! ')

print('Welcome to Python! ')

	

e. Write	a	program	to	display	the	message	'Python	is	awesome!'	two	times,	on	separate	
lines,	using	only	one	print	statement	and	\n		
	

 76

print('Python is awesome!\n Python is awesome!\n ')

	
f. What	are	the	syntax	errors	in	the	following	statements:	

	
print('Hello ! Goodbye!)- missing closing '
print(Hello ! Goodbye!') – missing opening '
print('Hello ! Goodbye!' - missing closing)
print 'Hello ! Goodbye!'). – missing opening (
prlnt('Hello ! Goodbye!') – misspelt print

Lesson 2 Solutions

1. Valid or invalid variable names
a. Is the variable name TotalMarks correct - Yes
b. Is the variable name number-of-students correct? NO – cannot use –in variable
name
c. Is the variable name firstName correct? Yes
d. Is the variable name myVar1 correct? Yes
e. Is the variable name customerName correct? Yes
f. Is the variable name productPrice correct? Yes
g. Is the variable name 3rdStudent correct? NO – cannot start with a digit
h. Is the variable name isAvailable? correct? Yes
i. Is the variable name total-sales correct? NO – cannot use –in variable name
j. Is the variable name customer_email correct? Yes

2. Write	a	program	that	asks	the	user	for	their	name	using	input.	Store	the	name	in	a	

variable	and	display	a	personalized	greeting	using	the	variable.		
	

name = input('Enter your name: ')

 print('Hello, how are you ', name)
	

3. What	is	the	output,	if	any,	of	the	following	program:	
	

print('hello\n')
print('bye bye\n')

No	output	because	any	text	following	#	is	treated	as	a	comment	and	ignored	by	
Python	

4. Write	a	program	that	prompts	the	user	to	enter	their	favourite	colour	and	favourite	
animal	using	the	input.	Store	these	values	in	separate	variables	and	display	them	in	a	
sentence	:

f_colour = input('Enter your favourite colour: ')
f_animal = input('Enter your favourite animal: ')

print('My fav colour is ', f_colour, 'and my fav animal is',

f_animal)

 77

Lesson 3 Solutions

Q1:

a. The data type of the variable 'age' is integer.

b. The data type of the variable 'name' is string.

c. The data type of the variable 'price' is float.

d. The data type of the variable 'is_valid' is boolean.

e. The data type of the variable 'quantity' is integer.

f. The data type of the variable 'message' is string.

g. The data type of the variable 'discount' is float.

2. Write a program to convert 10 dollars to kyats using an exchange rate of 1
dollar = 2100 kyats.

convert 10 dollars to kyats

dollars = 10
kyats = dollars * 2100

 print(f '{dollars} dollars = {kyats} kyats ')
	

 78

9. Write a program that takes a single length (a float) and calculates the following:
• The area of a square with side of that length. (length * length)
• The volume of a cube with side of that length. (length ** 3)
• The area of a circle with diameter of that length (3.14 * (length/2)**2))

calculate area of square, volume of cube and area of circle

length = float(input('Enter length: '))

area_of_square = length * length
cube_volume = length ** 3
area_of_circle = 3.14 * ((length / 2)**2)
print(f' Area of square: {area_of_square:.2f}')

 print(f' Volume of cube: {cube_volume:.2f}')
print(f' Area of circle: {area_of_circle:.2f}')

7. Write a program that takes an amount (a float), and calculates the tax due
according to a tax rate of 20%

calculate tax due at 20%

amount = float(input('Enter amount for tax at 20%: '))

tax = amount * 0.20
print(f'Tax: {tax:.2f}')

8. Write a program to simulate a cash register for a single purchase. The program
reads the unit cost of an item and the numbers of items purchased. The program
displays the total cost for that number of units:

Enter unit cost: 5
Enter number of units: 6

Total cost of 6 units: 30.00

calculate total cost as number of unit * unit cost

unit_cost = float(input('Enter unit cost: '))

number_units = float(input('Enter number of units: '))

total = unit_cost * number_units

print(f'\nTotal cost of {number_units} units: {total:.2f}')

	

 79

Lesson 4 Solutions

1. What	are	the	6	conditions	that	we	can	use	to	compare	two	numbers?	
See	Lesson	4	in	Handbook	
	

2. Write a program that asks the user to enter their exam score. If the score is greater
than or equal to 60, display 'Congratulations! You passed the exam'. Otherwise,
display 'Sorry, you did not pass the exam'.

score = int(input('Enter your exam score: '))
if score >= 60:

print('Congratulations! You passed the exam.')
else:

print('Sorry, you did not pass the exam.')	
	

3. Write	a	program	that	asks	the	user	to	enter	a	password.	If	the	password	is	
'password123',	display	'Access	granted'	Otherwise,	display	'Access	denied'		

password = input('Enter your password: ')
if password == 'password123':

print('Access granted')
else:

print('Access denied')

4. Write a program that prompts the user to enter their age and whether they have a
driver's license ('yes' or 'no). If the person is 18 or older and has a driver's license,
display 'You can legally drive'.
If the person is 18 or older but does not have a driver's license, display 'You can
apply for a driver's license'.
If the person is under 18, display 'You are not old enough to drive'.	

Prompt the user to enter their age

age = int (input('Enter your age: '))

Prompt whether they have a driver's license

has_license = input('Do you have a drivers license? [yes/no]:
')

Check the driving eligibility

if (age >= 18) and (has_license == 'yes'):
 print('You can legally drive.')

if (age >= 18) and (has_license == 'no'):
 print('You can apply for a drivers licence')

if (age < 18):
 print ('You are not old enough to drive.')	 	

 80

5. Write a program to simulate a cash register for a single purchase. The program
should read the unit cost (real number) of an item and the numbers of items
purchased. The program should display the total cost for the items. If the unit cost
is greater than 10000, the program should display an error message, 'Invalid unit
cost – too large.'
If the number of units is 0 or a negative number it should display an error message,
'Number of units must be greater than zero'.

cash.py: Calculate and display bill for items purchased

unit_cost = float(input('\n Unit cost: '))

if unit_cost > 10000:
 print(f'\n Unit cost {unit_cost} cannot exceed 10000: ')
else:

 num_units = float(input('\n Number of units: '))

 if num_units <= 0:
 print(f'\n Num of units {num_units} must be > 0')
 else:

 cost = num_units * unit_cost
 print(f'\n Total cost: {cost} ')

6. Write a program to show a menu of areas to be calculated and to calculate the area
chosen by the user.

calculate areas giving user options in a menu

print(f' s for the area of a square \n')
print(f' c for the area of a circle \n')
print(f' r for the area of a rectangle \n')

shape = input('\n Enter you choice [s, c, r] ')

if (shape == 's') :
 length = float(input(' Enter length: '))
 area_of_square = length * length
 print(f' Area of square: {area_of_square:.2f}')

if (shape == 'c'):
 radius = float(input(' Enter radius: '))
 area_of_circle = 3.14 * radius ** 2
 print(f' Area of circle: {area_of_circle:.2f}')

if (shape == 'r'):
 length = float(input(' Enter length: '))
 breadth = float(input(' Enter length: '))
 area_of_rectangle = length * breadth
 print(f' Area of rectangle: {area_of_rectangle:.2f}')

 81

7. Write a program to read two numbers and display which is the largest and smallest

of the numbers entered.

Find largest and smallest of two numbers

n1 = float(input('First number: '))

n2 = float(input('Second number: '))

if n1 > n2 :

large = n1
small = n2

 if n1 < n2 :
 large = n2
 small = n1
 if n1 == n2 :
 print(f' First number {n1} = Second number {n2} \n')
 else :
 print(f' Largest is {large} and smallest is {small} \n')

 82

Lesson 5 Solutions
1. Will the following loop finish ?

j = 0
while j < 10:
 print(f'j = {j}')
j = j + 1

No! The loop body will continue printing the message, because j is not increased
in the loop body.

 j = 0
 j = 0

The statement j = j + 1 is not indented, so it is not part of the loop body. This
is a common error.

2. Display the text		'Hello World'	on 5 separate lines using a while loop.

j = 0
while j < 5:
 print(f'Hello World')
 j = j + 1

3. Write a program that uses a while loop to display the numbers 1 to 10 on separate
lines.

j = 0
while j < 11:
 print(f'{j}')
 j = j + 1

4. Write a program that uses a while loop to sum the numbers: 2, 4, 6, 8, 10, 12,
14,16,18 and 20. The program then displays the sum of the numbers. [Hint: The
loop counter is increased in increments of 2].

sum = 0
j = 2
while j < 21:
 sum = sum + j
 j = j + 2

print(f'Sum is {sum}')

 83

5. Write a program that reads numbers entered by the user, until the user enters 0.
The program computes the sum and average of the numbers. The program then
displays the sum and average.

sum = 0
count = 0 # Number of numbers summed
n = float(input('Enter a number: '))
while n != 0:
 sum = sum + n
 count = county + 1
 n = float(input('Enter a number: '))

if count > 0:
 average = sum / count
 print(f'Sum is {sum} and Average is {average}')

Note: We need to test count > 0 because if the user enters 0 as the first number we
do not display sum and average.

More importantly, it is an error in any programming language to divide a number by
0. If we try to divide a number by 0 the program will crash!

6. Write a program to show a menu of areas and to calculate the area chosen by the

user. After each area has been calculated, the program displays the menu again.
The program continues until the user chooses the 'x' option.

Menu driven program to calculate areas

option = ''
while option != 'x':
 print(f'\n\n\nChoose one of the following options:\n')
 print(f's for the area of a square\n')
 print(f'c for the area of a circle\n')
 print(f'r for the area of a rectangle\n\n')
 print(f'x Exit program\n')

 option = input('Enter your choice: [s, c, r, x] ')
 if option == 'x':
 break

 if option == 's':
 length = float(input('Enter length: '))
 area_of_square = length * length
 print(f'Area of square: {area_of_square:.2f}')

 if option == 'c':
 radius = float(input('Enter radius: '))
 area_of_circle = 3.14 * (radius **2)
 print(f'Area of circle: {area_of_circle:.2f}')

 if option == 'r':
 length = float(input('Enter length: '))
 breadth = float(input('Enter breadth: '))
 area_of_rect= length * breadth
 print(f'Area of rect: {area_of_rect:.2f}')

 84

Lesson 6 Solutions

1. Write a program that asks the user to enter a character. If the character is a vowel
(a, e, i, o, u), print "It is a vowel."[Hint: Use the	if e in		construct]

c = input('Enter a character: ')
if c in 'aouie':
 print(f'{c} is a vowel')
else:
 print(f'{c} is not a vowel')

2. Write a program that asks the user to enter a string. If the string contains a vowel
(a, e, i, o, u), print "String contains a vowel."

Solution 1:

s = input('Enter a string: ')

found = 0 # assume no vowel found

for c in s:
 if c in 'aouie':
 print(f'String contains a vowel: {c}')
 found = 1
 break

if found == 0:
 print(f'String did not contain a vowel')

Solution 2:

s = input('Enter a string: ')

found = 0 # assume no vowel found

for j in range(len(s)) :
 if s[j] in 'aouie':
 print(f'String contains a vowel: {s[j]}')
 found = 1
 break

if found == 0:
 print(f'String did not contain a vowel')

 85

3. Rewrite L6.6 using for loops: a program that takes a list of student names with one
mark per student to compute the average class mark. The program then displays
the list if students, their mark and the deviation (difference) between their mark and
the class average.
L6.6 grade.py: Compute average mark for students in a list
List has name of each student and their mark in a text
There is 1 mark for each student

grades = ['Joe', 50, 'Tom', 65, 'Mary', 80, 'Ann', 90]

n = len (grades) #number of entries in list

sum = 0.0

for j in range(0, n, 2) :

 mark = float(grades[j+1])
 sum = sum + mark

average = sum / (n/2) # there are n/2 marks in the list

print (f'Class average {average:.2f}\n')
print(f'Name Mark Deviation from Class average\n')

process list in pairs (0,1), (2,3), (4,5) and (6, 7)
for j in range (0, n, 2):
 diff = grades[j+1] - average
 print(f'{grades[j]} {grades[j+1]} {diff:.2f}')

print(f'\nFinished \n')

4. Write a program to read a string and count the number of digits (0,1,2,..9) in it

Enter a string: 12abc34def56
There are 6 digits in 12abc34def56

digit.py count digits in a string

num_digits = 0

s = input('Enter any string: ')

for c in s:
 if c.isdigit():
 num_digits = num_digits + 1

print(f'{num_digits} digits in {s}')

 86

5. Write a program to read a string and count the number of uppercase letters (A..Z)
and lowercase letters (a..z) in the string.

chars.py count upper and lowercase in a string

num_lc = 0 # Number of uppercase
num_uc = 0 # Number of lowercase

s = input('Enter any string: ')

for c in s:
 if c.isupper():
 num_uc = num_uc + 1
 else:
 if c.islower():
 num_lc = num_lc + 1

print(f'{num_uc} uppercase and {num_lc} lowercase in {s}')

	

 87

More Python Programming: Files and Functions

File I/O

In Lessons 1 to 6 we have read input from the keyboard and displayed output on the screen. We
now look at using files in our programs. Every computer system uses files to store data. This allows
information to be saved from one computation to another. Each operating system (eg Unix, Linux,
Windows, MAC OS, Android, etc) comes with its own file system. A file system has operations for
creating, accessing, reading from, writing to and deleting files.

Accessing a file from within a Python program is done by using a file handle. Consider the Python
statement:

fileHandle = open(’junk.txt’, ’w’)

The open function instructs the operating system to create a file with the name junk.txt and
returns a file handle for that file that is bound to the variable fileHandle. We can use any
variable name we wish e.g fh.

The second argument to the open function, “w”, indicates that the file is opened for writing. This
means that we wish to store information in the file - in programming terminology we write to the
file.

If the file junk.txt already exists then any previous contents of the file will be overwritten -– take
care not to destroy an existing file! If the file does not exist, a new file will be created.

We can open a file for reading which means we wish to read information from the file, using “r” in
open().

When we are finished using a file in a program, we should close the file eg.

fileHandle.fclose()

We can only have a limited number of files open in a program at any time (sometimes around 20,
depending on the operating system). By closing files when we are finished with them, a program
can access 100’s of files but not all at the same time.

We can write a string address to a file by:

 fileHandle.write(address)

To read from a file, we must first call the open function with a second argument of “r”, indicating
that the file is opened for reading

 fh1 = open(’names.txt’, ’r’)

The function readline() reads a line from a file e.g.

 88

 line = fh1.readline()

readline() returns the empty string "" if the file is empty or when you have reached the end
of the file i.e. there is no more data in the file.

It is good practice to make sure that a file exists before we open it for reading, because if the file
does not exist the open function fails and your programme will display an error such as :
Traceback (most recent call last):
File "/home/john/Documents/dept/comp10280/2015 fh1 = open(filename, ’r’)
IOError: [Errno 2] No such file or directory:

One technique to check if a file exists is to use the function

os.path.isfile(filename)

This returns True if filename is an existing file and returns False otherwise

We need to include the line import os to access this function e.g. the following code fragment
prevents you from opening a file that does not exist.

import os

if not os.path.isfile(filename):
 print('File:' + filename + ' does not exist')
else:
 fh1 = open(filename, 'r’)

Terminating a Python script
There are times when you wish to terminate (quit, exit) a program immediately, for example, when
a data file you need to access does not exist, then stopping your program is the sensible thing to
do.

There are several ways to do this in Python but we will use the sys.exit() function, which
“tidies up” before quitting your program – this means that for example any output to the screen
will be done before quitting and any open files will be closed. You need to import sys to use this
function.

import os
import sys
……
….

if not os.path.isfile(filename):
 print('File:' + filename + ' does not exist\n')
 print('Terminating program \n')
 sys.exit()

else:
 fh1 = open(filename, 'r’)

 89

Some File I/O sample programs.
Program to create a file with 3 lines of text. We ask the use to specify the name of the file to be
created.

create.py: Create file with some lines of text

fname = input("\nEnter filename to be created: ")

fout = open(fname, "w") # Create new file

fout.write("Line 1 in the file\n")
fout.write("Line 2 in the file with more text\n")
fout.write("Line 3 Some more words and text 1 2 3 4 5 \n")
fout.close() # Close the file

Program to read and display the contents of a file specified by the user

read.py: Read lines from the file created by create.py
and prints them out

import os # Need this for path.isfile() function
import sys # Need this for sys.exit()

Get name of file to be read

filename = input("\nEnter file name: ")

Check whether the file exists

if not os.path.isfile(filename):
 print('File: ' + filename + ' does not exist')
 print('Quitting program')
 sys.exit()

else:
 fh1 = open(filename, 'r')

 line = fh1.readline() # read 1st line from file
 while line != "": # "" means end of file reached
 print(line, end = "")
 line = fh1.readline() # read next line from file

 fh1.close()

 90

Program to read and display the contents of a file 10 lines at a time.

display10.py: Display a file 10 lines at a time

import os
import sys

finput = input("\nEnter name of file to display: ")

if not os.path.isfile(finput):
 print('File: ' + finput + ' does not exist \n')
 print('\nQuitting ..\n')
 sys.exit()

fin = open(finput, "r")

linecount = 1
finished = ""

text = fin.readline()

while (text != "") and (finished != 'q'):
 print(text, end = "")
 linecount = linecount + 1
 if linecount == 10:
 linecount = 1 # reset line count to 1 for next 10 lines
 finished = input("Enter q to quit or Press Return to continue ")
 text = fin.readline()

fin.close()

This program opens the file specified by the if it exists. It then reads a line from the file and enters
a loop:

 while not at end of file and user has not entered q
 Print the line from the file
 Count number of lines printed
 If count == 10 then

ask the user to quit or continue
reset number of lines printed to 1

 read next line from the file

 91

Program to count and display the number of uppercase, lowercase and digits in a file specified by
the user

wc.py: Count uppercase, lowercase and digits in a file

import os
import sys

fname = input("\nEnter filename: ")

if not os.path.isfile(fname):
 print('File: ' + fname + ' does not exist \n')
 print('\nQuitting ..\n')
 sys.exit()

fin = open(fname, "r")

line = fin.readline() # Read 1st line

num_digits = 0 # Number of digits
num_lc = 0 # Number of lowercase letters
num_uc = 0 # Number of uppercase letters

while line != "": # while line not empty - not end of file
 for i in range(0, len(line)):
 if line[i] >= "0" and line[i] <= "9": # count the digits
 num_digits = num_digits + 1
 elif line[i] >= "A" and line[i] <= "Z":
 num_uc = num_uc + 1
 elif line[i] >= "a" and line[i] <= "z":
 num_lc = num_lc + 1

 line = fin.readline() # read next line from file

fin.close()

print("\nThe file ", fname, "contains: ")
print("\nUppercase letters: ",num_uc)
print("\nLowercase letters: ",num_lc)
print("\nDigits: ",num_digits, "\n\n")

 92

Write a program to make a copy of a file, specified by the user.

copy.py: Make a copy of an existing file

import os
import sys
finput = input("\nEnter name of file to be copied: ")

if not os.path.isfile(finput):
 print('File: ' + finput + ' does not exist \n')
 print('\nQuitting ..\n')
 sys.exit()

fin = open(finput, "r")

foutput = input("\nEnter name of new file: ")
fout = open(foutput, "w") # Create new file

text = fin.readline()

while text != "":
 fout.writelines(text)
 text = fin.readline()

fout.close() # Close the files
fin.close()

print("\nFile ", finput, " copied to ", foutput, " \n")

 93

Using a text editor create a “telephone directory” text file called “tel.dat” with entries of the
form

 Joe Bloggs 087 6767676767
 Fred Smith 085 567812345678
 Mary Anyone 085 12345657789

[Text editor:
A text editor produces a text file e.g. Notepad (Windows), Textedit or Gvim (Mac) (if using MS
Word, save the file as a text file not a “.doc” file).]

Write a Python program called tel to search the file for any text in the file.

Usage:
 $ python3 tel
What are you searching for or Press Enter to quit: joe

Output:

 Joe Bloggs 087 6767676767
 $
or
 $ python3 tel

What are you searching for or Press Enter to quit: 085

Output:

 Fred Smith 085 567812345678
 Mary Anyone 085 12345657789

 $ python3 tel

What are you searching for or Press Enter to quit: xxx

Output:

 xxx not found in file

 $ python3 tel

What are you searching for or Press Enter to quit: j

Output:

 Joe Bloggs 087 6767676767

 94

tel.py: Search list for what user is looking for

import os
import sys

fname = "tel.dat"

if not os.path.isfile(fname):
 print('File: ' + fname + ' does not exist')
 print('Quitting ...\n')
 sys.exit()

fh1 = open(fname, "r") # Open data file
inline = fh1.readline()

search = input("\nEnter text you are searching for or Press Enter to quit:")
search = search.lower() # convert to lowercase

while inline != "":
 line = inline.lower() # convert to lowercase
 if line.find(search) != -1: #if search text in current line
 print(inline)
 inline = fh1.readline()

fh1.close() # Close the file

The tel.py program first checks if the data file “tel.dat” exists and quits if the file does not exist.
Otherwise it opens the file and reads the first line.

It then askes the user to enter the search text or Enter to quit. It converts the search text to
lowercase.

It then goes into a loop:
 Converts the line form the file to lowercase
 Compares the line with the search text (both are in lowercase).
 If they match, it prints out the line from the file (inline) in its original case
 Reads next line from the file
When all lines have been read from the file, the program terminates.

The version of tel.py above only allows the user to search for one string before quitting. We
now rewrite the program to allow the user to continue searching until they decide to quit.

To do this, we add an outer loop:
While user has not pressed Enter
 Go back to the start of the file
 ask the user to enter the search text or Enter to quit

Go into inner loop until end of file reached:
 Converts the line form the file to lowercase
 Compares the line with the search text (both are in lowercase).
 If they match, it prints out the line from the file (inline) in its original case
 Reads next line from the file
 Check if user text was found in file and print message if it was not found

 95

We use the method (function) seek(0) to go back to the start of the file.

The call
 fh1.seek(0)

brings us to the start of the file that fh1 is associated with. When you read from a file, the
operating system remembers where you finished reading. Your next read will start from that
position. In our program, we read to the end of the file in the inner loop. When we wish to start a
new search then we must go back to the start of the file. The seek(0) function tells the operating
system to do this.

tel2.py: Search list for what user is looking for

import os
import sys

fname = "tel.dat"

if not os.path.isfile(fname):
 print('File: ' + fname + ' does not exist')
 print('Quitting ...\n')
 sys.exit()

fh1 = open(fname, "r") # Open data file
search = " "
while search != "":
 found = False
 fh1.seek(0) # Go to start of file
 inline = fh1.readline() # read 1st line from file

 search = input("\nEnter text you are searching for or Press Enter to quit: ")
 lower_search = search.lower() # convert to lowercase

 while (inline != "") and (lower_search != ""): # Search file
 line = inline.lower() # Convert lowercase
 if line.find(lower_search) != -1: # if text in current line
 print(inline)
 found = True
 inline = fh1.readline() # Read next line from file
 # & end of inner loop

 if (inline == "") and (found == False):
 print("\n", search, "not found in file\n") # end of outer loop

fh1.close() # Close the file

The above program is inefficient in that it reads the entire file for every search. Accessing a file on
disk is very slow compared to accessing the same information in the computer’s memory. We can
make the program more efficient by read all the lines of the file into a list of lines – we only need
to do this once. We then search this list for the information as often as we wish. Since the list is in
the computer’s memory, it is more efficient. However, for small files you will not notice any
difference in performance as computers are very fast! We now implement a version of the program
above with lists.

 96

tel3.py: Search list for what user is looking for using lists

import os
import sys

fname = "tel.dat"

if not os.path.isfile(fname):
 print('File: ' + fname + ' does not exist')
 print('Quitting ...\n')
 sys.exit()

fh1 = open(fname, "r") # Open data file
numlines = 0 # number of lines in the file

Read file into list
list = []

inline = fh1.readline() # read 1st line from file
while inline != "":
 list.append(inline) # add line to end of list
 inline = fh1.readline() # read next line
 numlines = numlines + 1 # count lines

list now contains all lines from the file

fh1.close() # close file

search = input("\nEnter text you are searching for or Press Enter to quit: ")
lower_search = search.lower() # convert to lowercase

while search != "":
 found = False
 i = 0 # index into list - start at list[0]

 while (numlines > i) and (lower_search != ""):
 line = list[i].lower()
 if line.find(lower_search) != -1:
 print(list[i])
 found = True
 i = i + 1
 if (numlines == i) and (found == False):
 print("\n", search, "not found in file\n")

 search = input("\nEnter text you are searching for or Press Enter to quit: ")
 lower_search = search.lower() # end of outer loop

Notes: We start with an empty list - list = [] and append on to the end of the list each line
we read from the file using list.append(inline). When we have read all lines from
the file, numlines will record the number of lines in the file. We now close the file and search
list for the user entries. The inner loop uses numlines to detect when it has reached the end
of the list.

 97

In the above program, instead of counting the lines in the file in the first while loop, after we
have read in the list, we could use the len function compute the length of the list which is the
number of lines in the file:

numlines = len(list)

Functions

Programming languages provide a facility to break large tasks into smaller ones. This is done by
using subprograms. Programming languages provide the programmer with the ability to define
and use subprograms and different languages use different names for subprograms such as
subroutines, procedures and functions. Python provides only one kind of subprogram - function.

Functions allow us break our programs into smaller more manageable units. They are
fundamental to the development of programs longer than a few dozen statements. A function is
simply a facility for giving a name to a group of one or more statements.

Functions are defined once, but can be called (used, invoked) as often as desired. We have
already used functions extensively. The statements used for I/O e.g. print, input,
readline write are all examples of function usage. These functions have been predefined
so that we do not have to define them in our programs. They are part of a functions library that is
available when programming in Python.

Functions make our programming task easier for two main reasons. Firstly they allow us to reuse
the same group of statements many times by referring to them by name rather than repeating
the code. From our programs to date, it can be seen that functions such as print() and
input() are used very frequently.

Secondly they make our programs easier to read and understand. This is because the name of the
function usually describes the purpose of the statements making up the function. Thus, even, if
we only use a function once in a program, it is useful from a documentation viewpoint, to make
the program easier to read. A meaningful name should be used for each function.
Documentation refers to the comments, variable names and function names we use in our
programs. By using comments that explain what the program is doing and by choosing
meaningful variable and function names – we are documenting our program.

Variables may be declared inside functions and are said to be local variables i.e. they are
separate to variables with the same name used outside the function..

In order to pass information to functions we use parameters. These are the values inside the
parentheses when the function is called. For example, take the statement

 print(f“{feet} feet = {inches} inches“);

In this case, the print() takes three parameters: a string and two variables are passed as
parameters.

 98

In the function definition, we can use any name for the parameter, which is called a formal
parameter. When we call the function, we pass an actual parameter (argument) to it. The value
of the actual parameter is processed by the function.

We do not have to pass parameters to a function. As an example, we could define a function
called newline() which outputs the newline character as follows:

def newline(): #No parameters required
 print(“\n“)

This function requires no parameters. Such a function will always carry out the same task.

The use of parameters allows us to vary the task a function carries out. So we could rewrite
newline() to take a number as a parameter which specifies how many newline characters to
output:

def newline(n): # Output newline character n times
 for in range(n)
 print(“\n”, end = “”)

We call the function wherever wish on our program after we have defined it:

 newline(1) # print 1 blank line

 x = 10

 newline(x) # print x blank lines

You may define as many functions as you wish. Usually the code of the functions is included in
the same file as the program that calls them and they must be defined in the program before you
can call them.

Example : Complete program that defines and calls newline().

call.py: calls the function newline()

def newline(n): # Output newline character n times
 for in range(n)
 print(“\n”, end = “”)

 print(“This program calls the newline() function“)
 newline(2)
 print(“This appears two lines after the first message above”);

This program produces as output:

This program calls the newline() subprogram

 99

This appears two lines after the first message above

It is possible to store functions in separate files to the one used for the main program. For
example, the functions input(), open(), print() and so on are stored in a file referred
to as a function library or simply library. When you run Python programs you can access these
function be default. We will see later that you can create your own library (module) of Python
functions that you define.

Formal Arguments/Formal Parameters.
These are the names used inside a function to refer to its parameters or arguments e.g. n in the
def newline(n) function definition

Actual Arguments/Actual Parameters.
These are the names or values used as arguments when the function is actually called; in other
words, the values that the formal arguments will have on entry to the function e.g. the 2 or the
x in the call below are actual arguments

 newline(4)
 newline(x)

The function power takes two arguments, f and p and computes f to the power p

def power(f, p):
 res = 1;
 for i in range(p+1):
 result = result *f

 return result

x = 10
y = 3

print(f'2 to power 4 = {power(2, 4)}\n')
print(f'x: {x} to power y: {y} = {power(x, y)}\n')

Outputs:

2 to power 4 = 16
x: 10 to power y: 3 = 1000

 100

The return statement
The return statement causes a value to be returned from the current function to its caller. It is
possible to omit return in a function in which case the function terminates “falling through” the
last statement. In this case, an value None will be returned e.g.

print(‘Before calling newline()’)

x = newline(2)

print(f’x = {x} \n’)

outputs

Before calling newline()

x = None

The form of the return statement is as follows:

return expression

The expression is optional; if it is omitted, the value None is returned.

Top-Down Programming
In solving this program we have used a particular programming methodology called top-
down programming or stepwise refinement (divide and conquer).

This methodology advocates breaking your problem into smaller problems (subproblems).
Then you take each subproblem independently and further refine it to smaller steps. The
process continues until you cannot refine the subproblems further. You then combine the
final refinements to give an entire solution. You should then check the entire solution to see
that it makes sense. Then you work through this solution with some sample data to test that
it will work. Finally, you translate your solution into the language of your choice (Python,
C++, Java, etc). Thus we speak of programming into a language and not programming in a
language !

It is critical that before attempting to refine your problem, you understand the problem
fully.

You should be able to specify precisely what inputs you expect and what outputs are to be
produced.

You should also understand what processing is required to transform the inputs to give the
required outputs.

At this stage you may begin your stepwise refinement process. This is made considerably
easier if your problem specification is clear and unambiguous. Major problems arise in

 101

practice due to poor problem specifications and misunderstandings between the
programmer and the problem specifier.

Functions and Variables
The declaration of variables inside function brings up an interesting issue. How are we to
distinguish between variables declared inside a function from those declared inside other
functions and the rest of the program. What happens if we use the same name for a variable
in different functions. This is called a name conflict. A simple rule is used to avoid name
conflicts.

Variables declared inside a subprogram can only be accessed inside that subprogram. We
say that they are local to the function and call them local variables.

Technically we say that the scope of the variable is the function in which it is declared.

Scope rules allow us determine what variables can be accessed at any point in a program.

Another important point regarding functions is that when a function finishes execution, its
local variables effectively disappear. Local variables only exist while the function where they
are declared is executing. Each time the function is executed they come into existence and
they cease to exist when the function terminates.

Examples
Write a program to allow the user check if a car registration is in a list of stolen cars.

The list is read from a file which has the car registration number and the owner name for a
number of stolen cars.

The programs checks if a registration number or an owner name is on the list. This is basically
the same as the tel program we have presented earlier.

The list of stolen cars is in a file stolen.dat which has the form:

2020WXY1976 Joe Carthy
2012DNK7768 Bill Jones
2023Ky1024 Mary Smith
2020tn123 Jack Jones
anyreg Joe Bloggs

Firstly we present the program without using functions:

 102

stolen.py: Search a file of stolen cars

fh1 = open('stolen.dat', 'r')

Read names and car reg from file into a list

list = []
inline = fh1.readline() # read 1st line from file

while inline != "":
 list.append(inline) # add line to end of list
 inline = fh1.readline()

list now contains all lines from the file

fh1.close()

num_entries = len(list)

search = input("\nEnter Car Reg Number or Press Enter to quit: ")
lower_search = search.lower() # convert to lowercase

while search != "":
 found = False
 i = 0 # index into list - start at list[0]

 while (num_entries > i) and (lower_search != ""):
 line = list[i].lower
 if line.find(lower_search) != -1:
 print(list[i])
 found = True
 i = i + 1

 if (num_entries == i) and (found == False):
 print("\n", search, "not found in file\n")

 search = input("\nEnter Car Reg Number or Press Enter to quit: ")
 lower_search = search.lower() # end of outer loop

print('\n\nFinished \n\n')

We now present version 2 of the program using functions to:
 Check that we can open the data file
 Read the list of entries from the file into a list
 Search the list for an entry

 103

stolen2.py: Search a file of stolen cars
import os
import sys

open_and_quit(): function to check if file cannot be opened and
quit with error message otherwise return the file handle

def open_and_quit(fname):

 if not os.path.isfile(fname):
 sys.exit('File: ' + fname + ' does not exist')
 else:
 fh1 = open(fname, "r") # Open data file

 return fh1

def read_list_of_registrations(filename):

 fh1 = open_and_quit(filename)

 # Read names and car reg from file into a list
 inline = fh1.readline() # read 1st line from file

 while inline != "":
 list.append(inline) # add line to end of list
 inline = fh1.readline()

 # list now contains all lines from the file

 fh1.close()
 return # end of function

def search_list(list):

 num_entries = len(list)
 search = input("\nEnter Car Reg Number or Enter to quit: ")
 lower_search = search.lower()
 while search != "":
 found = False
 i = 0

 while (num_entries > i) and (lower_search !=
 line = list[i].lower
 if line.find(lower_search) != -1
 print('\n', list[i])
 found = True
 i = i + 1

 if (num_entries == i) and (found == False):
 print("\n", search, "not found in file\n")

 search = input("\nEnter Car Reg Number or Enter to quit: ")
 lower_search = search.lower() # end of outer loop
 return

 104

main program

list = [] # Create list to store entries

read_list_of_registrations('stolen.dat')

search_list (list)

print('\n\nFinished \n\n')

The above program shows how functions can be used.

Note the line:

sys.exit('File: ' + fname + ' does not exist')

The sys.exit() function closes any open files and terminates your program but displays the string
passed as a parameter before the program quits. So if the file stolen.dat did not exist the program
would display

 File: stolen.dat does not exist

and the program would terminate,

Running stolen2.py produces the following outputs:

% python3 stolen2.py
Enter Car Reg Number or Enter to quit: xxx

 xxx not found in file

Enter Car Reg Number or Press Enter to quit: joe

 2020WXY1976 Joe Carthy

 anyreg Joe Bloggs

Enter Car Reg Number or Enter to quit:

Finished

 105

Creating your own function library or module

You can define your functions and store them in a file e.g. we could store the functions
read_list_of_registrations(),search_list() and open_and_quit()in a
file called car.py separate from the program file stolen2.py.

The file car.py is a module (library) of functions which we can now use in any program we write.

To use any of these functions in a program, we import the module into the program file where
we wish to use the functions.

In the program where we wish to use the functions, we call them by putting the module name, in
this case, “car.” as the first part of the function name i.e. car.search_list().

So our main program stolen4.py has the form below:

stolen4.py: Search a file of stolen cars

import car # allows us use functions from car.py

main program

list = [] # Create list to store entries

car.read_list_of_registrations('stolen.dat', list)

car.search_list (list)

print('\n\nFinished \n\n')

The file car.py will contain the code of the functions as we used earlier but we need to add
one parameter to the read_list_of_registrations for the list.

car.py: functions for stolen cars program

import os
import sys

def open_and_quit(fname):

 code of the function as above

def read_list_of_registrations(filename, list):

 code of the function as above but with added parameter list

def search_list(list):

 code of the function as above

 106

Conclusion

We have now covered the main topics in programming that allow you write an infinite variety of
useful programmes. The code written to put the first men on the moon did not have many of the
useful features that have been covered!

Having said that, there is still a lot to be learned. The best way to learn is to practice, to read
other people’s code and of course read books and web articles on programming.

There is no substitute for your own practice. Practice writing short programs. Develop your own
library of functions that you can use in your programs.

Keep going and good luck !!

Joe Carthy

