Module 7: Introduction to Regular Expressions

Regular expressions, often referred to as regex or regexp, are sequences of
characters that define a search pattern. They are powerful tools for pattern matching
and text manipulation in Python and other programming languages. Regular
expressions allow you to specify complex search criteria, making it easier to extract,

replace, or manipulate text based on specific patterns.
Basics of Regular Expressions

Literal Characters: Literal characters in a regular expression match themselves in
the input string. For example, the regex ne110 will match the string "hello" in the
input text.
Metacharacters: Metacharacters are special characters that have a reserved
meaning in regular expressions. Some common metacharacters include:
e . (dot): Matches any single character except newline.
e - (caret): Matches the start of the string.
e s (dollar): Matches the end of the string.
e +, 4+, 2: Quantifiers that specify the number of repetitions of the preceding
character or group.
e [: Character class, matches any one of the characters inside the
brackets.
e | (pipe): Alternation, matches either the expression before or after the
pipe.
Quantifiers: Quantifiers specify the number of occurrences of a character or
group in a regular expression.
e +: Matches zero or more occurrences.
e : Matches one or more occurrences.
e -: Matches zero or one occurrence.
Character Classes: Character classes allow you to match any one of a set of
characters. For example, (aciou] matches any vowel.

Examples

Matching a Specific Word:

text =
pattern =
match = re.search(pattern, text)

match:
print(, match.group())

print(

Matching Any Single Character:

text =

pattern

matches re.findall(pattern, text)
print(, matches)

Matching Start and End of String:

text =
pattern_start =
pattern_end =

match_start = re.search(pattern_start, text)

match_end = re.search(pattern_end, text)

match_start:
print(, match_start.group())

match_end:
print(, match_end.group())

Matching Repetitions:

text =
pattern

matches re.findall(pattern, text)
print(, matches)

Matching Character Classes:

text =

pattern
matches re.findall(pattern, text)
print(, matches)

Regular expressions provide a flexible and efficient way to search, extract, and
manipulate text based on specific patterns. By understanding the basics of regular
expressions and using them effectively, you can perform complex text processing tasks

with ease.

Exercises and Answers for Introduction to Regular Expressions
Literal Character Match:

Write a Python program that searches for the word "apple” in a given text string
using a regular expression.

Single Character Match:

Create a regular expression pattern to match any three-letter word in a given text
string. Test it with the string "cat dog hat bat".

Start and End Match:

Write a Python program to check if a given string starts with "Hello" and ends
with "World" using regular expressions.

Repetitions Match:

Create a regular expression pattern to match sequences of consecutive digits in
a given text string. Test it with the string "123abc456def789ghi".

Character Class Match:

Write a Python program that extracts all the vowels from a given text string using
a regular expression.

Note: You can use the re.search () function to search for a pattern in a text string, and
re.findall () function to find all occurrences of a pattern in a text string.

Answers

Literal Character Match:

text =
pattern =
match = re.search(pattern, text)

match:
print(, match.group())

priét()

Single Character Match:

text =

pattern
matches re.findall(pattern, text)
print(, matches)

Start and End Match:

text =
pattern_start
pattern_end =

match_start = re.search(pattern_start, text)
match_end = re.search(pattern_end, text)

match_start:
print(, match_start.group())

match_end:
print(, match_end.group())

Repetitions Match:

text =

pattern

matches re.findall(pattern, text)
print(, matches)

Character Class Match:

text =

pattern
matches re.findall(pattern, text)
print(, matches)

These exercises will help you practice using regular expressions to perform
pattern matching tasks in Python. Regular expressions are powerful tools for text
processing and can be used in various applications to search, extract, and manipulate
text based on specific patterns.

