
Module 9: Advanced Regular Expression
Techniques

Regular expressions (regex) are powerful tools for pattern matching and text
manipulation in Python. Advanced regex techniques extend the capabilities of basic
pattern matching to handle more complex scenarios. Here are some advanced
techniques along with examples:

Grouping and Capturing

Grouping allows you to define subexpressions within a regex pattern. Capturing

groups extract portions of the matched text for further processing.

import re

Example: Matching a date pattern and capturing the year, month, and day

date_string = "2024-03-05"

pattern = r'(\d{4})-(\d{2})-(\d{2})'

match = re.match(pattern, date_string)

if match:

print("Year:", match.group(1))

print("Month:", match.group(2))

print("Day:", match.group(3))

Non-Capturing Groups

Non-capturing groups are like regular groups but do not capture the matched

text. They are useful when you need to group expressions for alternation or

quantification without extracting the text.

import re

Example: Matching either "foo" or "bar" but not capturing the text

text = "foobar"

pattern = r'(?:foo|bar)'

match = re.search(pattern, text)

if match:

print("Match found:", match.group())

Lookahead and Lookbehind Assertions

Lookahead and lookbehind assertions allow you to assert that a pattern is or is not

followed by or preceded by another pattern, without consuming the text.

import re

Example: Matching digits only if they are followed by a letter

text = "123abc 456def"

pattern = r'\d(?=[a-zA-Z])'

matches = re.findall(pattern, text)

print("Matches:", matches)

Backreferences

Backreferences allow you to reference capturing groups within the same regex pattern.

They are useful for matching repeated patterns or ensuring consistency.

import re

Example: Matching repeated words using backreferences

text = "hello hello"

pattern = r'(\b\w+\b) \1'

match = re.search(pattern, text)

if match:

print("Repeated word:", match.group())

Recursive Patterns

Recursive patterns allow regex to match nested structures, such as nested parentheses

or HTML tags.

import re

Example: Matching nested parentheses using recursive patterns

text = "(a(b(c)))"

pattern = r'\((?:[^()]|(?R))*\)'

match = re.search(pattern, text)

if match:

print("Nested parentheses:", match.group())

These advanced regular expression techniques extend the capabilities of basic
pattern matching in Python, allowing you to handle more complex text processing tasks
effectively.

Conclusion
In conclusion, advanced regular expression techniques in Python significantly

enhance text processing capabilities. By leveraging features such as grouping and

capturing, non-capturing groups, lookahead and lookbehind assertions, backreferences,

and recursive patterns, developers can efficiently handle complex pattern matching

scenarios. These techniques enable more precise and flexible text manipulation,

empowering Python programmers to tackle diverse tasks effectively and improve the

robustness and efficiency of their code.

Exercises and Answers for Advanced Regular Expression
Techniques

Exercises:

Grouping and Capturing:

Write a Python program that extracts the username and domain from an email
address using grouping and capturing.

Non-Capturing Groups:

Create a regular expression pattern that matches either "apple" or "banana"
followed by "pie" but does not capture the fruit name.

Lookahead and Lookbehind Assertions:

Write a regular expression to match words containing "cat" only if they are not
followed by "fish".

Backreferences:

Develop a regex pattern to match repeated consecutive words in a text.

Recursive Patterns:

Create a regex pattern to match nested HTML tags.

Answers:

 Grouping and Capturing:

import re

email = "john@example.com"

pattern = r'(\w+)@(\w+\.\w+)'

match = re.match(pattern, email)

if match:

username = match.group(1)

domain = match.group(2)

print("Username:", username)

print("Domain:", domain)

 Non-Capturing Groups:

import re

text = "apple pie and banana pie"

pattern = r'(?:apple|banana) pie'

matches = re.findall(pattern, text)

print("Matches:", matches)

 Lookahead and Lookbehind Assertions:

import re

text = "cat but not catfish"

pattern = r'\b\w+(?!fish)\b'

matches = re.findall(pattern, text)

print("Matches:", matches)

 Backreferences:

import re

text = "hello hello"

pattern = r'(\b\w+\b) \1'

match = re.search(pattern, text)

if match:

print("Repeated word:", match.group())

 Recursive Patterns:

import re

html = "<div><p>Text</p></div>"

pattern = r'<(\w+)(?:[^<]|(?R))*<\/\1>'

match = re.search(pattern, html)

if match:

print("Nested HTML tag:", match.group())

These exercises provide hands-on practice with advanced regular expression
techniques in Python, helping reinforce your understanding of pattern matching and text
manipulation.

