
Module 10: Deep Dive into Object-Oriented
Programming

Object-Oriented Programming (OOP) is a programming paradigm that revolves
around the concept of objects, which encapsulate data and behavior. In Python,
everything is an object, and understanding OOP is essential for writing clear, modular,
and maintainable code. Let's delve into OOP concepts with examples:

Classes and Objects

● Classes are blueprints for creating objects. They define attributes (data) and
methods (behavior).

● Objects are instances of classes.

class Car:

def __init__(self, make, model):

self.make = make

self.model = model

def drive(self):

print(f"Driving {self.make} {self.model}")

my_car = Car("Toyota", "Camry")

my_car.drive()

​ Attributes and Methods
● Attributes are variables that store data within objects.
● Methods are functions that perform operations on objects.

class Circle:

def __init__(self, radius):

self.radius = radius

def area(self):

return 3.14 * self.radius ** 2

my_circle = Circle(5)

print("Area:", my_circle.area())

​

​ Encapsulation
● Encapsulation restricts access to certain components of objects to prevent direct

modification from outside.
● Use private attributes and methods to encapsulate implementation details.

class BankAccount:

def __init__(self, balance):

self.__balance = balance

def deposit(self, amount):

self.__balance += amount

def withdraw(self, amount):

if amount <= self.__balance:

self.__balance -= amount

else:

print("Insufficient funds")

my_account = BankAccount(1000)

my_account.deposit(500)

my_account.withdraw(200)

​ Inheritance
● Inheritance allows a class to inherit attributes and methods from another class.
● The subclass can override methods or add new ones.

class Animal:

def speak(self):

print("Animal speaks")

class Dog(Animal):

def speak(self):

print("Dog barks")

my_dog = Dog()

my_dog.speak()

​ Polymorphism
● Polymorphism allows objects of different classes to be treated as objects of a

common superclass.

● It enables flexibility and code reuse.

class Shape:

def area(self):

pass

class Circle(Shape):

def __init__(self, radius):

self.radius = radius

def area(self):

return 3.14 * self.radius ** 2

class Rectangle(Shape):

def __init__(self, length, width):

self.length = length

self.width = width

def area(self):

return self.length * self.width

def calculate_area(shape):

return shape.area()

my_circle = Circle(5)

my_rectangle = Rectangle(4, 6)

print("Circle area:", calculate_area(my_circle))

print("Rectangle area:", calculate_area(my_rectangle))

​

​ Abstraction
● Abstraction hides complex implementation details and only exposes necessary

functionalities.
● It simplifies code and improves maintainability.

python

Copy code

from abc import ABC, abstractmethod

class Shape(ABC):

@abstractmethod

def area(self):

pass

class Circle(Shape):

def __init__(self, radius):

self.radius = radius

def area(self):

return 3.14 *

Composition and Aggregation

● Composition represents a "has-a" relationship, where one class contains another
as a component.

● Aggregation represents a "part-of" relationship, where one class uses another
class but can exist independently.

class Engine:

def start(self):

print("Engine started")

class Car:

def __init__(self):

self.engine = Engine()

def start(self):

self.engine.start()

my_car = Car()

my_car.start()

Understanding these OOP concepts enables you to design robust and scalable
applications in Python, promoting code reuse, modularity, and maintainability.

Conclusion
In conclusion, understanding Object-Oriented Programming (OOP) concepts in

Python is essential for writing clean, modular, and maintainable code. By leveraging
classes, objects, inheritance, encapsulation, polymorphism, abstraction, and
composition, developers can design efficient and flexible solutions for a wide range of
problems. OOP promotes code reusability, scalability, and readability, making it a
fundamental paradigm for software development in Python and beyond.

Exercises and Answers for Deep Dive into Object-Oriented
Programming (OOP)
Class Creation:

Create a Python class named Rectangle with attributes length and width, and a
method calculate_area() that returns the area of the rectangle.

Inheritance:

Create a subclass Square of the Rectangle class. Override the
calculate_area() method to calculate the area of a square given its side length.

Encapsulation:

Modify the Rectangle class to make the length and width attributes private.
Provide methods set_length() and set_width() to set the length and width of the
rectangle, and methods get_length() and get_width() to retrieve their values.

Polymorphism:

Create a function print_area() that accepts an object of either Rectangle or
Square class and prints the area using the calculate_area() method.

Abstraction:

Create an abstract class Shape with an abstract method calculate_area().
Modify the Rectangle and Square classes to inherit from Shape and implement the
calculate_area() method.

Answers:

​ Class Creation:

class Rectangle:

def __init__(self, length, width):

self.length = length

self.width = width

def calculate_area(self):

return self.length * self.width

rect = Rectangle(5, 4)

print("Area of rectangle:", rect.calculate_area())

​ Inheritance:

class Square(Rectangle):

def __init__(self, side_length):

super().__init__(side_length, side_length)

def calculate_area(self):

return self.length * self.length

square = Square(5)

print("Area of square:", square.calculate_area())

​ Encapsulation:

class Rectangle:

def __init__(self, length, width):

self.__length = length

self.__width = width

def set_length(self, length):

self.__length = length

def set_width(self, width):

self.__width = width

def get_length(self):

return self.__length

def get_width(self):

return self.__width

rect = Rectangle(5, 4)

rect.set_length(6)

print("Length of rectangle:", rect.get_length())

​ Polymorphism:

def print_area(shape):

print("Area:", shape.calculate_area())

rect = Rectangle(5, 4)

square = Square(5)

print_area(rect)

print_area(square)

​ Abstraction:

from abc import ABC, abstractmethod

class Shape(ABC):

@abstractmethod

def calculate_area(self):

pass

class Rectangle(Shape):

def __init__(self, length, width):

self.length = length

self.width = width

def calculate_area(self):

return self.length * self.width

class Square(Shape):

def __init__(self, side_length):

self.side_length = side_length

def calculate_area(self):

return self.side_length * self.side_length

rect = Rectangle(5, 4)

square = Square(5)

print("Area of rectangle:", rect.calculate_area())

print("Area of square:", square.calculate_area())

These exercises cover fundamental OOP concepts like class creation,
inheritance, encapsulation, polymorphism, and abstraction, allowing you to practice and
reinforce your understanding of OOP in Python.

