
0

JavaScript for
Absolute Beginner

By Du Wun Aung

Acknowledgements
I would like to extend my heartfelt appreciation to several individuals who have been

instrumental in the creation of this book.

I also want to express my sincere gratitude to my friends, Dr. PSH, Dr. Henry, Dr.
Aung Ye Kyaw, Ko Htet Arkar Soe, and Ma May Phyoe Thu, for providing me with
opportunities and inspiration. Your friendship and camaraderie have enriched my life, and I
am grateful for the creative energy and enthusiasm you bring to every interaction.

Additionally, I want to acknowledge MYEO and all team members for their support
and encouragement throughout this journey. Your presence has been a source of motivation,
and I am grateful for your unwavering belief in my endeavors.

Last but not least, I want to thank all the readers who have chosen to embark on this
journey with me. Your interest and enthusiasm for this book are deeply appreciated, and I
hope that the insights and knowledge shared within its pages will inspire and empower you
on your own journeys.

With heartfelt gratitude,
Du Wun Aung

Page No: 1 © 2024 Du Wun Aung. All rights reserved

Disclaimer

I want to be transparent with you, the reader, that this book underwent

grammar and spelling checking with the assistance of ChatGPT. While ChatGPT was

used solely for these purposes and not for content generation, it's important to

acknowledge its role in the editing process. Additionally, English is not my primary

language, so while ChatGPT's assistance was valuable, there may still be nuances

and intricacies in the language that could be improved.

Important Note: The Concept and Course Design of this book is the exclusive

property of Du Wun Aung. All rights reserved. No part of this book may be

reproduced or transmitted in any form or by any means, electronic or mechanical,

including photocopying, recording, or by any information storage and retrieval

system, without prior written permission from the copyright owner, except for brief

quotations embodied in critical reviews and certain other noncommercial uses

permitted by copyright law.

Page No: 2 © 2024 Du Wun Aung. All rights reserved

Acknowledgements 1
Disclaimer 2
Introduction 4

Course Description: 5
Course Objectives: 5
Course Outline: 5
Prerequisites: 6

Module 1: Introduction to JavaScript 7
What is JavaScript and Why is it Important? 7
Write Your First JavaScript Code: Alerts, console.log, and Comments 7
Using JavaScript in HTML Documents 9
Exercises 9
Conclusion 11

Module 2: Variables and Data Types 12
Variables in JavaScript: 12
Data Types in JavaScript 12
Working with Variables and Data Types 13
Exercises 14
Conclusion 15

Module 3: Operators and Expressions 17
Arithmetic Operators 17
Comparison Operators 17
Logical Operators 18
String Concatenation Operator 18
Exercises 19
Conclusion 21

Module 4: Control Flow and Loops 22
Conditional Statements 22
Switch Statement for Multi-way Branching 22
Loops 23
Looping Through Arrays and Objects 23
Exercises 24
Conclusion 27

Module 5: Functions 28
Introduction to Functions 28
Declare and Invoke Functions 28
Parameters and Return Values 28
Scope 29
Exercises 29
Conclusion 31

Module 6: Manipulating the Document Object Model (DOM) 33

Page No: 3 © 2024 Du Wun Aung. All rights reserved

Introduction to the DOM 33
Accessing DOM Elements 33
Manipulating DOM Elements 33
Creating and Removing DOM Elements 34
Event Handling 34
Exercises 35
Conclusion 37

Module 7: Practical Project: Interactive To-Do List 38
Project Overview 38
HTML Structure 38
CSS (styles.css) 39
JavaScript (script.js) 40
Conclusion 42

Next Steps 43
Dear Reader, 45

Page No: 4 © 2024 Du Wun Aung. All rights reserved

Introduction

Course Description:

This course is tailored for absolute beginners who are eager to learn JavaScript for
web frontend development. JavaScript is a crucial language for creating interactive
and dynamic web content. Throughout this course, you will embark on a journey
from understanding basic JavaScript concepts to applying them in a practical
project. By the end of the course, you'll have the knowledge and skills to start
building your own simple web applications.

Course Objectives:

● Provide a comprehensive introduction to JavaScript fundamentals.
● Introduce practical projects to reinforce learning and skills application.
● Cover essential concepts such as variables, loops, functions, and DOM

manipulation.
● Foster a hands-on learning environment through coding exercises and project

development.
● Prepare students to continue learning and exploring more advanced topics in

web development.

Course Outline:

Module 1: Introduction to JavaScript

● What is JavaScript and why is it important?
● Setting up your development environment (text editor, browser)
● Writing your first JavaScript code: alerts, console.log, comments

Module 2: Variables and Data Types

● Understanding variables and their role in programming
● Declaring variables with var, let, and const
● Primitive data types: strings, numbers, booleans
● Working with variables: assigning values, variable naming conventions

Module 3: Operators and Expressions

● Arithmetic operators: +, -, *, /, %
● Comparison operators: ==, ===, !=, !==, >, <, >=, <=

Page No: 5 © 2024 Du Wun Aung. All rights reserved

● Logical operators: &&, ||, !
● Using operators in JavaScript expressions

Module 4: Control Flow and Loops

● Conditional statements: if, else if, else
● Switch statement for multi-way branching
● Introduction to loops: for loop, while loop
● Looping through arrays and objects

Module 5: Functions

● Introduction to functions: what they are and why they're useful
● Declaring functions and invoking them
● Function parameters and return values
● Scope in JavaScript: global scope vs. local scope

Module 6: Manipulating the Document Object Model (DOM)

● Understanding the DOM and its structure
● Accessing DOM elements using document.getElementById,

document.querySelector, etc.
● Modifying DOM elements: changing text, styles, attributes
● Handling user events: click events, input events

Module 7: Practical Project: Interactive To-Do List

● Applying JavaScript concepts learned in the course to build an interactive
to-do list web application

● Creating a user interface with HTML and CSS
● Implementing JavaScript functionality: adding tasks, marking tasks as

completed, deleting tasks
● Styling and enhancing the user experience

Prerequisites:

● No prior programming experience required
● Basic familiarity with HTML and CSS is beneficial but not necessary

This course is designed to provide a gentle introduction to JavaScript for
absolute beginners, culminating in the development of a practical web application.
Through a combination of theoretical explanations, coding exercises, and project

Page No: 6 © 2024 Du Wun Aung. All rights reserved

work, students will gain a solid understanding of JavaScript fundamentals and the
ability to apply them in real-world scenarios.

Page No: 7 © 2024 Du Wun Aung. All rights reserved

Module 1: Introduction to JavaScript

JavaScript is a versatile programming language primarily used for adding
interactivity and dynamic behavior to web pages. It is one of the three core
technologies of web development, alongside HTML and CSS. In this module, we'll
explore what JavaScript is and why it's essential for web development. Additionally,
we'll dive into writing your first JavaScript code, covering basic techniques such as
alerts, console.log, and comments.

What is JavaScript and Why is it Important?

JavaScript is a high-level, interpreted programming language that was initially
developed for use in web browsers. It allows developers to create interactive
elements, manipulate content, and respond to user actions on web pages. Unlike
HTML (markup language) and CSS (styling language), JavaScript is a full-fledged
programming language that adds functionality and behavior to static web content.

Key Points:

● JavaScript enables dynamic content updates without requiring page reloads,
providing a smoother user experience.

● It is essential for creating interactive features such as forms validation,
animations, and dynamic page elements.

● JavaScript is supported by all modern web browsers, making it a ubiquitous
language for web development.

● With the rise of client-side frameworks like React, Angular, and Vue.js,
JavaScript's importance has grown even further in building complex web
applications.

Write Your First JavaScript Code: Alerts, console.log, and
Comments

Now, let's dive into writing some actual JavaScript code. We'll start with simple
examples to demonstrate basic JavaScript syntax and features.

Page No: 8 © 2024 Du Wun Aung. All rights reserved

a. Alerts:

An alert is a built-in function in JavaScript that displays a message dialog with an
optional message and an OK button. It's a quick way to provide information or
prompt the user for input.

Example:

alert("Hello, world!");

This code will display a dialog box with the message "Hello, world!" when executed.

b. console.log:

console.log() is a method used for logging messages to the console. It's commonly
used for debugging purposes, as it allows developers to inspect values, variables,
and execution flow within their JavaScript code.

Example:

console.log("Hello, world!");

This code will log the message "Hello, world!" to the browser's console.

c. Comments:

Comments are non-executable lines of text used to annotate code for readability and
documentation purposes. JavaScript supports both single-line (//) and multi-line (/*
*/) comments.

Example:

// This is a single-line comment

console.log("Hello, world!"); // Logging a message to the console

/*

This is a multi-line comment

It can span multiple lines

*/

Page No: 9 © 2024 Du Wun Aung. All rights reserved

Using JavaScript in HTML Documents

You can include JavaScript code directly within HTML documents using the

<script> tag. Here's how to embed JavaScript into an HTML file:

<!DOCTYPE html>

<html lang="en">

<head>

<meta charset="UTF-8">

<meta name="viewport" content="width=device-width, initial-scale=1.0">

<title>JavaScript in HTML</title>

</head>

<body>

<h1>JavaScript in HTML Example</h1>

<!-- JavaScript code embedded within HTML -->

<script>

// JavaScript code goes here

alert("Welcome to our website!");

</script>

</body>

</html>

In this example, the JavaScript code enclosed within the <script> tags will be

executed when the browser encounters it while rendering the HTML document. This

allows you to seamlessly integrate JavaScript functionality into your web pages.

Exercises

Exercise 1: Alert Message

Create an alert message that welcomes the user to the website.

Answer:

alert("Welcome to our website!");

Page No: 10 © 2024 Du Wun Aung. All rights reserved

Exercise 2: Console.log Messages

Log the following messages to the console:

​ "Hello, world!"
​ "Today is a great day!"
​ "JavaScript is awesome!"

Answer:

console.log("Hello, world!");

console.log("Today is a great day!");

console.log("JavaScript is awesome!");

Exercise 3: Comments

Add comments to the following code snippet to explain what each line does:

console.log("This is a comment exercise.");

console.log(5 + 3);

alert("Thanks for participating!");

Answer:

// Display a message in the console

console.log("This is a comment exercise.");

// Log the result of a mathematical operation

console.log(5 + 3);

// Alert a message to the user

alert("Thanks for participating!");

These exercises should provide you with practice in using alert messages,
console.log statements, and comments effectively in JavaScript code.

Page No: 11 © 2024 Du Wun Aung. All rights reserved

Conclusion

In this module, we've explored the fundamentals of JavaScript, understanding
its significance in web development and writing our first lines of code. As we
progress through the course, we'll delve deeper into JavaScript's capabilities and
learn how to harness its power to create dynamic and interactive web experiences.

Page No: 12 © 2024 Du Wun Aung. All rights reserved

Module 2: Variables and Data Types

In JavaScript, variables are used to store and manipulate data. Understanding
variables and data types is fundamental to programming. In this module, we'll
explore how to declare variables, understand different data types available in
JavaScript, and how to work with them effectively.

Variables in JavaScript:

Variables are containers for storing data values. In JavaScript, variables can be
declared using the var, let, or const keywords.

● var: Historically used for variable declaration. Variables declared with var are
function-scoped.

● let: Introduced in ES6 (ECMAScript 2015) for block-scoped variables. Use let

when the variable's value will change.
● const: Also introduced in ES6, const declares constants, which cannot be

reassigned a new value.

Example:

var x = 10; // var declaration

let y = 20; // let declaration

const z = 30; // const declaration

Data Types in JavaScript

JavaScript is a loosely typed language, meaning variables can hold values of any
data type without explicitly specifying the type. Common data types in JavaScript
include:

● Primitive Data Types:
● Number: Represents numeric values. Can be integers, floating-point

numbers, or scientific notation.
● String: Represents textual data enclosed in single (' ') or double (" ")

quotes.
● Boolean: Represents a logical value, true or false.
● Undefined: Represents an uninitialized variable.

Page No: 13 © 2024 Du Wun Aung. All rights reserved

● Null: Represents the intentional absence of any object value.
● Symbol: Introduced in ES6, represents unique identifiers.

Example:

let num = 42; // Number

let str = "Hello, World!"; // String

let isTrue = true; // Boolean

let myVar; // Undefined

let empty = null; // Null

let sym = Symbol('foo'); // Symbol

● Non-Primitive (Reference) Data Types:
● Object: Represents a collection of key-value pairs. Objects can be

created using object literals {}, constructors, or classes.

Example:

let person = { name: "John", age: 30 }; // Object literal

let arr = [1, 2, 3]; // Array (special kind of object)

let today = new Date(); // Date object

Working with Variables and Data Types

● Variable Naming Conventions: Variable names should be descriptive,
meaningful, and follow camelCase convention. They cannot begin with a
number, and certain keywords are reserved.

Example:

let myVariable; // Good variable name

let my_variable; // Not recommended (use camelCase)

let 1num; // Invalid variable name (s

● Typeof Operator: The typeof operator returns the data type of its operand.

Example:

Page No: 14 © 2024 Du Wun Aung. All rights reserved

console.log(typeof num); // Output: "number"

console.log(typeof str); // Output: "string"

console.log(typeof isTrue); // Output: "boolean"

Exercises

Exercise 1: Variable Declaration

Declare variables for the following:

​ Your age.
​ Your name.
​ Your favorite color.

Answer:

let age = 25;

let name = "John";

let favoriteColor = "blue";

Exercise 2: Arithmetic Operations

Perform arithmetic operations using variables:

​ Add your age and your friend's age.
​ Subtract your age from 100.
​ Multiply your age by 2.

Answer:

let yourAge = 25;

let friendsAge = 30;

let sumAges = yourAge + friendsAge; // 55

let subtractFrom100 = 100 - yourAge; // 75

let multiplyBy2 = yourAge * 2; // 50

Exercise 3: String Concatenation

Combine variables to create meaningful strings:

​ Concatenate your name and favorite color to form a greeting message.

Page No: 15 © 2024 Du Wun Aung. All rights reserved

​ Concatenate your age and your friend's age to form a sentence.

Answer:

let greetingMessage = "Hello, " + name + "! Your favorite color is " + favoriteColor

+ ".";

let ageSentence = "I am " + yourAge + " years old, and my friend is " + friendsAge +

" years old.";

Exercise 4: Boolean Variables

Create boolean variables representing the following:

​ Whether it's raining today.
​ Whether you are a student (true/false).

Answer:

let isRaining = true;

let isStudent = false;

Exercise 5: Null and Undefined

Create variables representing the following:

​ A variable initialized with a null value.
​ A variable without initialization (undefined).

Answer:

let nullVariable = null;

let undefinedVariable;

These exercises should help reinforce your understanding of variables and
data types in JavaScript.

Conclusion

Understanding variables and data types is crucial for writing effective JavaScript
code. In this module, we've covered variable declaration, common data types in

Page No: 16 © 2024 Du Wun Aung. All rights reserved

JavaScript, and how to work with them. Having a solid grasp of variables and data
types will lay a strong foundation for your JavaScript programming journey.

Page No: 17 © 2024 Du Wun Aung. All rights reserved

Module 3: Operators and Expressions

In JavaScript, operators are symbols used to perform operations on operands, such

as variables or values. Expressions are combinations of variables, values, and operators that

result in a single value. Understanding operators and expressions is essential for

manipulating data and controlling program flow. In this module, we'll explore various types of

operators and how to use them effectively in JavaScript.

Arithmetic Operators

Arithmetic operators are used to perform mathematical operations on numeric operands.

● Addition (+): Adds two operands.
● Subtraction (-): Subtracts the right operand from the left operand.
● Multiplication (*): Multiplies two operands.
● Division (/): Divides the left operand by the right operand.
● Modulus (%): Returns the remainder of the division of two operands.

Example:

let x = 10;

let y = 5;

let sum = x + y; // 10 + 5 = 15

let difference = x - y; // 10 - 5 = 5

let product = x * y; // 10 * 5 = 50

let quotient = x / y; // 10 / 5 = 2

let remainder = x % y; // 10 % 5 = 0

Comparison Operators

Comparison operators are used to compare two values and return a Boolean result

(true or false).

● Equal to (==): Returns true if the operands are equal.
● Strict equal to (===): Returns true if the operands are equal and of the same type.
● Not equal to (!=): Returns true if the operands are not equal.

Page No: 18 © 2024 Du Wun Aung. All rights reserved

● Strict not equal to (!==): Returns true if the operands are not equal or not of the same
type.

● Greater than (>): Returns true if the left operand is greater than the right operand.
● Less than (<): Returns true if the left operand is less than the right operand.
● Greater than or equal to (>=): Returns true if the left operand is greater than or equal

to the right operand.
● Less than or equal to (<=): Returns true if the left operand is less than or equal to the

right operand.

Example:

let a = 5;

let b = 10;

console.log(a == b); // false

console.log(a !== b); // true

console.log(a < b); // true

Logical Operators

Logical operators are used to combine multiple conditions and return a Boolean result.

● Logical AND (&&): Returns true if both operands are true.
● Logical OR (||): Returns true if at least one operand is true.
● Logical NOT (!): Returns the opposite boolean value of the operand.

Example:

let x = 5;

let y = 10;

console.log(x > 3 && y < 20); // true

console.log(x > 7 || y < 5); // false

console.log(!(x > 7)); // true

String Concatenation Operator

The string concatenation operator (+) is used to concatenate (join) two or more

strings together.

Page No: 19 © 2024 Du Wun Aung. All rights reserved

Example:

let firstName = "John";

let lastName = "Doe";

let fullName = firstName + " " + lastName; // "John Doe"

Exercises

Exercise 1:

Calculate the result of the following arithmetic operations:

​ 15 + 7
​ 30 - 12
​ 5 * 6
​ 20 / 4
​ 10 % 3 (remainder of dividing 10 by 3)

Answers:

​ 15 + 7 = 22
​ 30 - 12 = 18
​ 5 * 6 = 30
​ 20 / 4 = 5
​ 10 % 3 = 1

Exercise 2:

Determine whether the following comparisons are true or false:

​ 10 > 5
​ 20 < 8
​ 5 === 5
​ 10 != 10
​ 15 >= 15

Answers:

​ 10 > 5 (true)
​ 20 < 8 (false)
​ 5 === 5 (true)

Page No: 20 © 2024 Du Wun Aung. All rights reserved

​ 10 != 10 (false)
​ 15 >= 15 (true)

Exercise 3:

Evaluate the following logical expressions:

​ (10 > 5) && (20 < 8)
​ (5 === 5) || (10 != 10)
​ !(15 >= 15)
​ (8 < 5) && (6 === 6)
​ (4 > 3) || (7 < 5)

Answers:

​ (10 > 5) && (20 < 8) => (true) && (false) => false
​ (5 === 5) || (10 != 10) => (true) || (false) => true
​ !(15 >= 15) => !(true) => false
​ (8 < 5) && (6 === 6) => (false) && (true) => false
​ (4 > 3) || (7 < 5) => (true) || (false) => true

Exercise 4:

Concatenate the following strings:

​ "Hello, " + "world!"
​ "My favorite color is " + "blue."
​ "The value of pi is approximately " + 3.14
​ "Today is " + "Monday."
​ "I am " + 25 + " years old."

Answers:

​ "Hello, " + "world!" => "Hello, world!"
​ "My favorite color is " + "blue." => "My favorite color is blue."
​ "The value of pi is approximately " + 3.14 => "The value of pi is approximately

3.14"
​ "Today is " + "Monday." => "Today is Monday."
​ "I am " + 25 + " years old." => "I am 25 years old."

These exercises should help reinforce your understanding of arithmetic, comparison,
logical operators, and string concatenation in JavaScript.

Page No: 21 © 2024 Du Wun Aung. All rights reserved

Conclusion

Operators and expressions are fundamental concepts in JavaScript for performing

various operations and making decisions in your code. In this module, we've covered

arithmetic, comparison, logical, and string concatenation operators and how to use them

effectively to manipulate data and control program flow. Understanding these concepts will

enable you to write more dynamic and expressive JavaScript code.

Page No: 22 © 2024 Du Wun Aung. All rights reserved

Module 4: Control Flow and Loops

In JavaScript, control flow and loop structures are essential for executing code
conditionally and repetitively. This module covers various control flow statements
and loop constructs, including conditional statements, switch statements, and
different types of loops.

Conditional Statements

Conditional statements allow you to execute different blocks of code based on
conditions. The most common conditional statements in JavaScript are if-else
statements.

let num = 10;

if (num > 0) {

console.log("The number is positive.");

} else if (num < 0) {

console.log("The number is negative.");

} else {

console.log("The number is zero.");

}

Switch Statement for Multi-way Branching

The switch statement is used for multi-way branching based on the value of
an expression.

let day = new Date().getDay();

switch (day) {

case 0:

console.log("Sunday");

break;

case 1:

console.log("Monday");

break;

case 2:

console.log("Tuesday");

break;

// and so on...

default:

console.l

Page No: 23 © 2024 Du Wun Aung. All rights reserved

Loops

Loops allow you to execute a block of code repeatedly until a certain
condition is met. JavaScript provides different loop constructs, including for loops,
while loops, and do-while loops.

a. For Loop

The for loop is used to execute a block of code a specified number of times.

for (let i = 0; i < 5; i++) {

console.log("Iteration " + i);

}

b. While Loop

The while loop is used to execute a block of code as long as a condition is true.

let count = 0;

while (count < 5) {

console.log("Count: " + count);

count++;

}

Looping Through Arrays and Objects

Arrays and objects are fundamental data structures in JavaScript. You can iterate
through them using loops to access and manipulate their elements.

a. Looping Through Arrays

let fruits = ["apple", "banana", "orange"];

for (let i = 0; i < fruits.length; i++) {

console.log(fruits[i]);

}

b. Looping Through Objects

Page No: 24 © 2024 Du Wun Aung. All rights reserved

let person = {

name: "John",

age: 30,

city: "New York"

};

for (let key in person) {

console.log(key + ": " + person[key]);

}

Exercises

Exercise 1: Check Even or Odd

Write a program that takes an integer as input and prints whether it's even or odd.

Answer:

let num = 7;

if (num % 2 === 0) {

console.log(num + " is even.");

} else {

console.log(num + " is odd.");

}

Exercise 2: Multiplication Table

Write a program to print the multiplication table (up to 10) of a given number.

Answer:

let number = 5;

for (let i = 1; i <= 10; i++) {

console.log(number + " * " + i + " = " + (number * i));

}

Exercise 3: Factorial Calculation

Write a program to calculate the factorial of a given number.

Answer:

Page No: 25 © 2024 Du Wun Aung. All rights reserved

let n = 5;

let factorial = 1;

for (let i = 1; i <= n; i++) {

factorial *= i;

}

console.log("Factorial of " + n + " is: " + factorial);

Exercise 4: Print Even Numbers

Write a program to print all even numbers from 1 to 20.

Answer:

for (let i = 2; i <= 20; i += 2) {

console.log(i);

}

Exercise 5: Reverse Counting

Write a program to print numbers from 10 to 1 in reverse order.

Answer:

for (let i = 10; i >= 1; i--) {

console.log(i);

}

Exercise 6: Print Fibonacci Series

Write a program to print the Fibonacci series up to a certain limit (e.g., 50).

Answer:

let limit = 50;

let n1 = 0, n2 = 1, nextTerm;

console.log("Fibonacci Series:");

console.log(n1);

console.log(n2);

nextTerm = n1 + n2;

while (nextTerm <= limit) {

console.log(nextTerm);

Page No: 26 © 2024 Du Wun Aung. All rights reserved

n1 = n2;

n2 = nextTerm;

nextTerm = n1 + n2;

}

Note:

The Fibonacci series is a sequence of numbers where each number is the sum of the two preceding
ones, usually starting with 0 and 1. The sequence looks like this:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ...

The Fibonacci sequence can be defined recursively by the following formula:

F(n) = F(n-1) + F(n-2)

Where F(n) is the nth term in the sequence, and F(n-1) and F(n-2) are the previous two terms.

Here's how the sequence is generated:

​ Start with 0 and 1 as the first two numbers.
​ Each subsequent number in the sequence is the sum of the two preceding numbers.

So, for example:

● The third number is 0 + 1 = 1
● The fourth number is 1 + 1 = 2
● The fifth number is 1 + 2 = 3
● The sixth number is 2 + 3 = 5
● And so on...

The Fibonacci sequence has many interesting properties and applications in mathematics, computer
science, and nature, making it a fascinating topic of study.

Exercise 7: Check Prime Number

Write a program to check whether a given number is prime or not.

Answer:

let num = 11;

let isPrime = true;

for (let i = 2; i <= Math.sqrt(num); i++) {

if (num % i === 0) {

isPrime = false;

break;

Page No: 27 © 2024 Du Wun Aung. All rights reserved

}

}

if (isPrime) {

console.log(num + " is a prime number.");

} else {

console.log(num + " is not a prime number.");

}

Exercise 8: Sum of Array Elements

Write a program to find the sum of elements in an array.

Answer:

let numbers = [1, 2, 3, 4, 5];

let sum = 0;

for (let i = 0; i < numbers.length; i++) {

sum += numbers[i];

}

console.log("Sum of array elements: " + sum);

These exercises cover a range of control flow and loop concepts in
JavaScript. Practice them to enhance your understanding and proficiency in using
these constructs.

Conclusion

In this module, you've learned about control flow statements such as if-else
and switch, different types of loops including for and while loops, and how to loop
through arrays and objects in JavaScript. Practice these concepts to become
proficient in controlling the flow of your programs and performing repetitive tasks
efficiently.

Page No: 28 © 2024 Du Wun Aung. All rights reserved

Module 5: Functions

In JavaScript, functions are blocks of reusable code that perform a specific
task. They allow you to break down your program into smaller, manageable pieces
and make your code more modular and organized. This module covers the
fundamentals of functions in JavaScript.

Introduction to Functions

Functions are blocks of code that can be defined once and executed repeatedly.
They can take inputs, perform actions, and return results. Functions help in
organizing code, promoting reusability, and making code more readable.

Declare and Invoke Functions

Declaring a function involves defining its name, parameters (optional), and the code
block to be executed. Functions can then be invoked or called to execute the code
within them.

// Function declaration

function greet() {

console.log("Hello!");

}

// Function invocation

greet();

Parameters and Return Values

Functions can accept inputs called parameters, which are used as variables within
the function's scope. Functions can also return values using the return statement.

function add(a, b) {

return a + b;

}

let result = add(3, 5); // result = 8

Page No: 29 © 2024 Du Wun Aung. All rights reserved

Scope

Scope refers to the visibility of variables within a program. JavaScript has two types
of scope: global scope and local scope. Variables declared outside of any function
have global scope, while variables declared within a function have local scope.

let globalVar = "I'm global";

function myFunction() {

let localVar = "I'm local";

console.log(globalVar); // Accessible

}

console.log(globalVar); // Accessible

console.log(localVar); // Error: localVar is not defined

Exercises

​ Write a function that takes two numbers as parameters and returns their sum.
​ Answer:

nction sum(a, b) {

return a + b;

}

console.log(sum(3, 5)); // Output: 8

​ Write a function that takes a string as a parameter and returns its length.
​ Answer:

function stringLength(str) {

return str.length;

}

console.log(stringLength("Hello")); // Output: 5

​ Create a function that checks if a given number is even or odd and returns the result.
​ Answer:

function checkEvenOrOdd(num) {

if (num % 2 === 0) {

Page No: 30 © 2024 Du Wun Aung. All rights reserved

return "Even";

} else {

return "Odd";

}

}

console.log(checkEvenOrOdd(7)); // Output: Odd

​ Write a function that takes an array of numbers and returns the sum of all elements.
​ Answer:

function sumArray(arr) {

let sum = 0;

for (let i = 0; i < arr.length; i++) {

sum += arr[i];

}

return sum;

}

console.log(sumArray([1, 2, 3, 4, 5])); // Output: 15

​ Implement a function that calculates the factorial of a given number recursively.
​ Note: Factorial is a mathematical operation that is denoted by the symbol '!'. It

represents the product of all positive integers up to a given number. For example, the
factorial of 5 (written as 5!) is calculated as:

​ 5! = 5 × 4 × 3 × 2 × 1 = 120
​
​ Answer:

function factorial(n) {

if (n === 0 || n === 1) {

return 1;

} else {

return n * factorial(n - 1);

}

}

console.log(factorial(5)); // Output: 120

​ Create a function that takes two strings as parameters and concatenates them.
​ Answer:

function concatenateStrings(str1, str2) {

return str1 + str2;

Page No: 31 © 2024 Du Wun Aung. All rights reserved

}

console.log(concatenateStrings("Hello", "World")); // Output: HelloWorld

​ Write a function that takes an array of numbers as a parameter and returns the
largest number in the array.

​ Answer:

function findLargestNumber(arr) {

let max = arr[0];

for (let i = 1; i < arr.length; i++) {

if (arr[i] > max) {

max = arr[i];

}

}

return max;

}

console.log(findLargestNumber([1, 5, 3, 9, 2])); // Output: 9

​ Implement a function that checks if a given year is a leap year and returns true or
false. (Note: In the Gregorian calendar, which is the most widely used calendar
system today, a year is a leap year if it is divisible by 4, except for years that are
divisible by 100. However, years that are divisible by 400 are still considered leap
years.)

​ Answer:

function isLeapYear(year) {

if ((year % 4 === 0 && year % 100 !== 0) || year % 400 === 0) {

return true;

} else {

return false;

}

}

console.log(isLeapYear(2024)); // Output: true

Conclusion

Functions are a fundamental concept in JavaScript programming. By understanding
how to declare, invoke, and utilize parameters and return values effectively, along
with understanding scope, you'll be able to write more modular and reusable code.

Page No: 32 © 2024 Du Wun Aung. All rights reserved

Practice with the provided exercises to solidify your understanding of functions in
JavaScript.

Page No: 33 © 2024 Du Wun Aung. All rights reserved

Module 6: Manipulating the Document Object
Model (DOM)

In web development, the Document Object Model (DOM) is a programming interface
for web documents. It represents the structure of an HTML document as a tree of
objects, allowing JavaScript to interact with and manipulate the content, structure,
and style of a web page dynamically.

Introduction to the DOM

The DOM is a hierarchical representation of an HTML document. Each HTML
element, attribute, and text node in the document is represented as an object in the
DOM tree. JavaScript can access and manipulate these objects to dynamically
modify the web page.

Accessing DOM Elements

JavaScript provides methods to access DOM elements by their IDs, classes, tag
names, or CSS selectors. Some common methods include getElementById,
getElementsByClassName, getElementsByTagName, querySelector, and
querySelectorAll.

Example:

// Accessing an element by ID

let element = document.getElementById("myElement");

// Accessing elements by class name

let elements = document.getElementsByClassName("myClass");

// Accessing elements by tag name

let paragraphs = document.getElementsByTagName("p");

// Accessing an element using a CSS selector

let element = document.querySelector("#myElement");

Manipulating DOM Elements

Once you've selected DOM elements, you can manipulate them by changing their
properties, attributes, styles, or content. Common methods for manipulation include
innerHTML, textContent, setAttribute, style, classList, etc.

Page No: 34 © 2024 Du Wun Aung. All rights reserved

Example:

// Changing text content

element.textContent = "New text";

// Changing attribute value

element.setAttribute("src", "newImage.jpg");

// Changing CSS styles

element.style.color = "red";

// Adding or removing classes

element.classList.add("newClass");

element.classList

Creating and Removing DOM Elements

JavaScript allows you to create new DOM elements dynamically and add them to the
document using methods like createElement and appendChild. Similarly, you can
remove existing elements from the document using methods like removeChild.

Example:

// Creating a new element

let newElement = document.createElement("div");

// Appending the new element to an existing element

parentElement.appendChild(newElement);

// Removing an existing element

parentElement.removeChild(existingElement);

Event Handling

The DOM enables you to respond to user interactions (events) such as clicks, mouse
movements, keyboard input, etc. You can attach event listeners to DOM elements to
execute specific actions when events occur, using methods like addEventListener.

Example:

// Adding a click event listener

element.addEventListener("click", function() {

console.log("Element clicked!");

Page No: 35 © 2024 Du Wun Aung. All rights reserved

});

Exercises
Exercise 1: Change Text Content

Create an HTML document with a paragraph element with ID "demo". Using
JavaScript, change the text content of the paragraph to "Hello, World!".

Answer:

<!DOCTYPE html>

<html lang="en">

<head>

<meta charset="UTF-8">

<meta name="viewport" content="width=device-width, initial-scale=1.0">

<title>Exercise 1</title>

</head>

<body>

<p id="demo">Original text</p>

<script>

document.getElementById("demo").textContent = "Hello, World!";

</script>

</body>

</html>

Exercise 2: Change Background Color

Create an HTML document with a div element with class "box". Using JavaScript,
change the background color of the div to "red".

Answer:

<!DOCTYPE html>

<html lang="en">

<head>

<meta charset="UTF-8">

<meta name="viewport" content="width=device-width, initial-scale=1.0">

<title>Exercise 2</title>

<style>

.box {

width: 100px;

height: 100px;

background-color: blue; /* Initial color */

}

</style>

Page No: 36 © 2024 Du Wun Aung. All rights reserved

</head>

<body>

<div class="box"></div>

<script>

document.querySelector(".box").style.backgroundColor = "red";

</script>

</body>

</html>

Exercise 3: Create New Element

Create an HTML document with an empty unordered list (ul) element with ID
"myList". Using JavaScript, create a new list item (li) element with text content "Item
1" and append it to the unordered list.

Answer:

<!DOCTYPE html>

<html lang="en">

<head>

<meta charset="UTF-8">

<meta name="viewport" content="width=device-width, initial-scale=1.0">

<title>Exercise 3</title>

</head>

<body>

<ul id="myList">

<script>

let newListElement = document.createElement("li");

newListElement.textContent = "Item 1";

document.getElementById("myList").appendChild(newListElement);

</script>

</body>

</html>

Exercise 4: Remove Element

Create an HTML document with a paragraph element with ID "removeMe". Using
JavaScript, remove the paragraph element from the document.

Answer:

<!DOCTYPE html>

<html lang="en">

<head>

<meta charset="UTF-8">

<meta name="viewport" content="width=device-width, initial-scale=1.0">

<title>Exercise 4</title>

Page No: 37 © 2024 Du Wun Aung. All rights reserved

</head>

<body>

<p id="removeMe">This paragraph will be removed.</p>

<script>

let elementToRemove = document.getElementById("removeMe");

elementToRemove.parentNode.removeChild(elementToRemove);

</script>

</body>

</html>

Exercise 5: Event Handling

Create an HTML document with a button element with ID "myButton". Using
JavaScript, add a click event listener to the button that alerts "Button clicked!" when
clicked.

Answer:

<!DOCTYPE html>

<html lang="en">

<head>

<meta charset="UTF-8">

<meta name="viewport" content="width=device-width, initial-scale=1.0">

<title>Exercise 5</title>

</head>

<body>

<button id="myButton">Click me</button>

<script>

document.getElementById("myButton").addEventListener("click", function() {

alert("Button clicked!");

});

</script>

</body>

</html>

These exercises demonstrate various aspects of DOM manipulation in
JavaScript. Practice with them to improve your understanding and proficiency in
working with the DOM.

Conclusion

Understanding how to manipulate the DOM is crucial for building dynamic and
interactive web pages with JavaScript. By mastering DOM manipulation techniques,

Page No: 38 © 2024 Du Wun Aung. All rights reserved

you can create engaging user experiences and enhance the functionality of your web
applications.

Module 7: Practical Project: Interactive To-Do List

In this module, we'll create an interactive to-do list application using HTML, CSS, and
JavaScript. This project will demonstrate how to manipulate the DOM to add,
remove, and update tasks dynamically.

Project Overview

The to-do list will have the following features:

​ Ability to add new tasks.
​ Mark tasks as completed.
​ Delete tasks.
​ Filter tasks based on their completion status (all, active, completed).
​ Clear all completed tasks at once.

HTML Structure

<!DOCTYPE html>

<html lang="en">

<head>

<meta charset="UTF-8">

<meta name="viewport" content="width=device-width, initial-scale=1.0">

<title>To-Do List</title>

<link rel="stylesheet" href="styles.css">

</head>

<body>

<div class="container">

<h1>To-Do List</h1>

<input type="text" id="taskInput" placeholder="Add new task...">

<ul id="taskList">

<div class="footer">

<div class="task-count" id="taskCount"></div>

<div class="filter-options">

<button id="allTasks">All</button>

<button id="activeTasks">Active</button>

<button id="completedTasks">Completed</button>

</div>

<button id="clearCompleted">Clear Completed</button>

</div>

</div>

<script src="script.js"></script>

</body>

Page No: 39 © 2024 Du Wun Aung. All rights reserved

</html>

CSS (styles.css)

body {

font-family: Arial, sans-serif;

}

.container {

max-width: 400px;

margin: 20px auto;

padding: 0 20px;

}

h1 {

text-align: center;

}

input[type="text"] {

width: 100%;

padding: 10px;

margin-top: 10px;

box-sizing: border-box;

}

ul {

list-style-type: none;

padding: 0;

}

li {

display: flex;

align-items: center;

padding: 10px;

border-bottom: 1px solid #ddd;

}

.completed {

text-decoration: line-through;

color: #aaa;

}

.footer {

margin-top: 20px;

display: flex;

justify-content: space-between;

align-items: center;

}

.filter-options button {

Page No: 40 © 2024 Du Wun Aung. All rights reserved

margin-right: 5px;

}

button {

cursor: pointer;

}

JavaScript (script.js)

const taskInput = document.getElementById("taskInput");

const taskList = document.getElementById("taskList");

const taskCount = document.getElementById("taskCount");

const allTasksBtn = document.getElementById("allTasks");

const activeTasksBtn = document.getElementById("activeTasks");

const completedTasksBtn = document.getElementById("completedTasks");

const clearCompletedBtn = document.getElementById("clearCompleted");

let tasks = [];

function renderTasks() {

taskList.innerHTML = "";

tasks.forEach((task, index) => {

const taskItem = document.createElement("li");

taskItem.innerHTML = `

<input type="checkbox" id="task${index}" ${task.completed ? "checked" : ""}>

<label for="task${index}" class="${task.completed ? "completed" :

""}">${task.text}</label>

<button class="delete-btn">X</button>

`;

taskList.appendChild(taskItem);

});

updateTaskCount();

}

function updateTaskCount() {

const uncompletedTasks = tasks.filter(task => !task.completed).length;

taskCount.textContent = `${uncompletedTasks} ${uncompletedTasks === 1 ? "task" :

"tasks"} left`;

}

function addTask(text) {

tasks.push({ text, completed: false });

renderTasks();

}

function toggleTask(index) {

tasks[index].completed = !tasks[index].completed;

renderTasks();

}

Page No: 41 © 2024 Du Wun Aung. All rights reserved

function deleteTask(index) {

tasks.splice(index, 1);

renderTasks();

}

function clearCompletedTasks() {

tasks = tasks.filter(task => !task.completed);

renderTasks();

}

taskInput.addEventListener("keypress", function(event) {

if (event.key === "Enter" && taskInput.value.trim() !== "") {

addTask(taskInput.value.trim());

taskInput.value = "";

}

});

taskList.addEventListener("change", function(event) {

if (event.target.type === "checkbox") {

const index = event.target.id.slice(4);

toggleTask(index);

}

});

taskList.addEventListener("click", function(event) {

if (event.target.classList.contains("delete-btn")) {

const index = event.target.parentElement.querySelector("input").id.slice(4);

deleteTask(index);

}

});

allTasksBtn.addEventListener("click", function() {

renderTasks();

});

activeTasksBtn.addEventListener("click", function() {

const activeTasks = tasks.filter(task => !task.completed);

taskList.innerHTML = "";

activeTasks.forEach((task, index) => {

const taskItem = document.createElement("li");

taskItem.innerHTML = `

<input type="checkbox" id="task${index}">

<label for="task${index}">${task.text}</label>

<button class="delete-btn">X</button>

`;

taskList.appendChild(taskItem);

});

});

completedTasksBtn.addEventListener("click", function() {

const completedTasks = tasks.filter(task => task.completed);

taskList.innerHTML = "";

completedTasks.forEach((task, index) => {

Page No: 42 © 2024 Du Wun Aung. All rights reserved

const taskItem = document.createElement("li");

taskItem.innerHTML = `

<input type="checkbox" id="task${index}" checked>

<label for="task${index}" class="completed">${task.text}</label>

<button class="delete-btn">X</button>

`;

taskList.appendChild(taskItem);

});

});

clearCompletedBtn.addEventListener("click", function() {

clearCompletedTasks();

});

// Initial rendering

renderTasks();

Conclusion

This project demonstrates how to create an interactive to-do list application
using HTML, CSS, and JavaScript. The application allows users to add, mark as
complete, delete, and filter tasks dynamically.

Page No: 43 © 2024 Du Wun Aung. All rights reserved

Next Steps

As you move forward from completing this book, consider the following next steps:

Apply What You've Learned: Take the knowledge and skills you've gained from this
book and apply them in practical scenarios. Whether it's implementing code examples in
your projects or using the concepts discussed in your daily work, practical application is key
to solidifying your understanding.

Further Learning: Continuously expand your knowledge by exploring additional
resources, such as online tutorials, courses, books, and documentation. There's always
more to learn, and staying curious and open to new information will help you grow as a
developer.

Build Projects: Practice your skills by building projects that interest you. Whether it's
a small personal website, a web application, or a mobile app, hands-on projects provide
valuable experience and help reinforce your learning.

Collaborate and Network: Engage with other developers, join online communities,
attend meetups, and participate in hackathons. Collaboration and networking not only
expose you to different perspectives and ideas but also provide opportunities for learning
and growth.

Stay Updated: Stay abreast of the latest developments and trends in web
development. Technology is constantly evolving, so staying updated with the latest tools,
frameworks, and best practices is essential to remain competitive in the field.

Reflect and Iterate: Take time to reflect on your learning journey and identify areas for
improvement. Set goals for yourself, experiment with new techniques, and iterate on your
skills to continually progress as a developer.

Remember that learning is a lifelong journey, and each step you take brings you closer to
your goals. Embrace challenges, stay curious, and keep pushing yourself to reach new
heights in your web development journey.

Page No: 44 © 2024 Du Wun Aung. All rights reserved

In addition to the concepts covered in this book, consider exploring the
following programming languages to broaden your skillset and deepen your
understanding of web development:

Python: Python is a versatile and beginner-friendly language known for its simplicity
and readability. It's widely used in web development, data analysis, machine learning,
and more. Learning Python can open up opportunities in various domains beyond
web development.

Ruby: Ruby is a dynamic, object-oriented programming language known for its
elegant syntax and developer-friendly environment. It's commonly used with the
Ruby on Rails framework for web development, making it a valuable language to
explore for building web applications.

Java: Java is a robust, cross-platform language commonly used for building
enterprise-level web applications, Android mobile apps, and backend services.
Understanding Java can be beneficial for developing scalable and secure web
applications.

C#: C# is a powerful, statically typed language developed by Microsoft and
commonly used for building desktop, web, and mobile applications within the .NET
ecosystem. Learning C# can open up opportunities in web development using
frameworks like ASP.NET.

Go: Go, also known as Golang, is a statically typed, compiled language developed by
Google. It's known for its simplicity, performance, and concurrency support, making it
a popular choice for building scalable web services and backend systems.

Swift: Swift is a modern, open-source programming language developed by Apple for
building iOS, macOS, watchOS, and tvOS applications. If you're interested in mobile
app development for Apple platforms, learning Swift can be advantageous.

JavaScript Frameworks: Dive deeper into JavaScript by exploring popular
frameworks and libraries such as React, Angular, Vue.js, and Node.js. These
frameworks offer powerful tools and patterns for building interactive web
applications and scalable backend services.

Exploring these programming languages will not only expand your technical skills but
also provide you with a broader perspective on software development. As you
continue your learning journey, don't hesitate to experiment with different languages
and technologies to find what resonates best with your interests and career goals.

Page No: 45 © 2024 Du Wun Aung. All rights reserved

Dear Reader,

I want to take a moment to express my heartfelt gratitude to you, the reader, for
choosing to engage with this book. Your interest and support mean the world to me,
and I am genuinely grateful for the opportunity to share my knowledge and insights
with you.

Creating this book has been a labor of love, and I hope that you find it
informative, inspiring, and enjoyable to read. Your willingness to explore new ideas,
learn, and grow is truly admirable, and I commend you for your dedication to personal
and intellectual enrichment.

As you delve into the pages of this book, I encourage you to approach the
content with an open mind and a curious spirit. Embrace the journey of discovery, ask
questions, seek understanding, and above all, apply what you learn to enrich your life
and the lives of those around you.

Once again, thank you for your support and enthusiasm. I am deeply grateful for
the opportunity to embark on this journey with you, and I look forward to the insights
and discoveries that await us.

Warm regards,
Du Wun Aung

Page No: 46 © 2024 Du Wun Aung. All rights reserved

