
Introduction to Flexbox
Web Development Essentials - Session 7



Session Overview

● Learning Goals for Today:
○ Understand the Flexbox layout model and how it simplifies page layout
○ Learn how to align and distribute elements within a Flexbox container using properties like justify-content and 

align-items



What is Flexbox?

● Definition: Flexbox, or the Flexible Box Layout, is a CSS layout model designed to arrange elements in one-dimensional 
space—either horizontally or vertically.

● Purpose: It makes it easier to design flexible, responsive layouts that adapt to different screen sizes without using floats or 
positioning.

● Key Concepts:
○ Flex Container: The parent element where Flexbox is applied.
○ Flex Items: The direct children of the flex container that are laid out according to the Flexbox rules.



Flexbox Layout Model Overview

Key Features of Flexbox:

● One-dimensional layout: Flexbox is perfect for layouts in a single direction (row or column).
● Dynamic sizing: Flex items can grow or shrink based on available space.
● Aligning and distributing space: Flexbox offers powerful alignment tools.

Basic Flexbox Structure:

● Flex Container: The parent element with display: flex;.
● Flex Items: The child elements inside the container.



Flexbox Axis
Main Axis vs Cross Axis:

● Main Axis: Defined by the flex-direction property. Determines how flex items are placed within the flex container (row or 
column).

● Cross Axis: Perpendicular to the main axis.
● Example:

○ flex-direction: row; → Main axis is horizontal.
○ flex-direction: column; → Main axis is vertical.



Flexbox Example Layout

In this example, the flex container arranges items in a row, and each item stretches to take up equal space.



Aligning Items Using Flexbox

Aligning Flex Items:

● Flexbox offers several properties to align and distribute space among flex items:
○ justify-content: Aligns items along the main axis (horizontal for row, vertical for column).
○ align-items: Aligns items along the cross axis (perpendicular to the main axis).



justify-content Property

Purpose: Controls how space is distributed along the main axis.

Common Values:

1. flex-start: Align items to the start of the main axis.
2. flex-end: Align items to the end of the main axis.
3. center: Center items along the main axis.
4. space-between: Distribute items with equal space between them.
5. space-around: Distribute items with equal space around them.



Combining justify-content and align-items

Aligning Both Axes:

● You can use both properties together to control alignment on the main axis (justify-content) and cross axis (align-
items).



flex-direction Property

Purpose: Defines the direction in which flex items are laid out.

Common Values:

1. row: Flex items are placed in a horizontal row.
2. row-reverse: Flex items are placed in reverse order in a horizontal row.
3. column: Flex items are placed in a vertical column.
4. column-reverse: Flex items are placed in reverse order in a vertical column.



flex-wrap Property

Purpose: Controls whether flex items wrap onto multiple lines.

Common Values:

1. nowrap: Flex items are displayed on a single line (default).
2. wrap: Flex items wrap onto multiple lines if they don't fit in a single line.
3. wrap-reverse: Flex items wrap in reverse order.



Flexbox in Action: Example

Result: Flex items are evenly spaced, centered along the cross axis, and wrap onto multiple lines if necessary.



Hands-On Activity

Goal: Use Flexbox to create a responsive layout.

● Align items using justify-content and align-items.
● Apply Flexbox to create a row or column of items that adjust with the screen size.

Instructions:

● Create a flex container with 4-5 items.
● Experiment with different values for justify-content, align-items, and flex-direction.



Summary

What We Learned Today:

● What Flexbox is and how it helps create flexible, responsive layouts.
● How to use key Flexbox properties like justify-content and align-items.
● How to arrange items along the main and cross axes with Flexbox.



Questions?
Q&A Session

● Any questions before we wrap up?

Thank You & See You in the Next Class!


